Table CT1. Energy Consumption Estimates for Major Energy Sources in Physical Units, Selected Years, 1960-2011, Vermont | | | | | | | Petroleum | | | | | | | |--------------|------------------------|-----------------------------|------------------------|--------------------------|------------------|--------------------------------|----------------------|--------------------|---------------------|---------------------------|--|------------------------------| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil | Jet
Fuel ^b | LPG ^c | Motor
Gasoline ^d | Residual
Fuel Oil | Other ^e | Total | Nuclear
Electric Power | Hydro-
electric
Power ^f | Fuel
Ethanol ⁹ | | Year | Thousand
Short Tons | Billion
Cubic Feet | | | | Thousand Barrels | | | | Million Kild | owatthours | Thousand Barrels | | 1960 | 137 | 0 | 2,958 | 82
79 | 404 | 3,332 | 478 | 1,178 | 8,431 | 0 | 873 | NA | | 1965 | 105 | 0 | 4,285 | 79 | 450 | 3,789 | 910 | 1,059 | 10,572 | 0 | 714 | NA | | 1970 | 87 | 3 | 5,741 | 121 | 542 | 5,077 | 905 | 898 | 13,285 | 0 | 786 | NA | | 1971
1972 | 79
56 | 3 | 5,391
5,674 | 112
255 | 590
699 | 5,331
5,677 | 916
944 | 944
778 | 13,285 | 0
169 | 742
942 | NA
NA | | 1972 | 59 | 4 | 5,674
6,047 | 200
219 | 685 | 5,763 | 944
870 | 778 | 14,026
14,295 | 1,598 | 1,059 | NA
NA | | 1973 | 60 | 5 | 5,071 | 204 | 703 | 5,626 | 526 | 643 | 12,772 | 2,483 | 991 | NA
NA | | 1975 | 31 | 4 | 4,642 | 177 | 833 | 5,698 | 796 | 502 | 12,647 | 3,561 | 938 | NA | | 1976 | 24 | 4 | 5,470 | 142 | 946 | 6,013 | 1,250 | 579 | 14,400 | 3,260 | 1,090 | NA | | 1977 | 29 | 4 | 5.360 | 137 | 946 | 6.125 | 1,142 | 542 | 14.252 | 3.538 | 958 | NA | | 1978 | 19 | 4 | 5,280 | 134 | 1,199
541 | 6,309 | 979 | 515 | 14,416 | 3,241 | 874 | NA | | 1979 | 24 | 4 | 5,486 | 172 | 541 | 5,830 | 347 | 633 | 13,008 | 3,449 | 930 | NA | | 1980 | 22 | 4 | 4,095 | 155 | 666 | 5,437 | 471 | 506 | 11,331 | 2,979 | 813 | NA | | 1981 | 42 | 4 | 3,819 | 155
82
91 | 626 | 5,506
5,529 | 348 | 430 | 10,811 | 3,569 | 1,003 | 0 | | 1982
1983 | 50
46 | 4 | 2,699
3,439 | 106 | 862
866 | 5,529
5,579 | 359
318 | 407
482 | 9,946
10,791 | 4,174
2,870 | 846
1,006 | 0 | | 1984 | 55 | 5 | 3,439
4,085 | 173 | 646 | 5,821 | 434 | 872 | 12,031 | 3,336 | 949 | 0 | | 1985 | 80 | 5 | 4,583 | 201 | 791 | 5,813 | 122 | 1,065 | 12,574 | 2,999 | 922 | 0 | | 1986 | 26 | 5 | 4,289 | 133 | 867 | 5,966 | 471 | 967 | 12,693 | 2,058 | 1,044 | 0 | | 1987 | 12 | 5 | 4,817 | 181 | 1,101 | 6,530 | 338 | 983 | 13,950 | 3,536 | 995 | Õ | | 1988 | 11 | 6 | 5,144 | 143 | 1,157 | 6,797 | 238 | 1,022 | 14,500 | 4,114 | 879 | 0 | | 1989 | 9 | 6 | 4,969 | 220 | 1,504 | 6,554 | 191 | 986 | 14,424 | 3,607 | 1,047 | 0 | | 1990 | 8 | 7 | 4,566 | 180 | 1,401 | 6,696 | 237 | 419 | 13,499 | 3,616 | 1,365 | 0 | | 1991 | 12 | 7 | 4,762 | 162 | 1,634 | 6,772 | 264 | 878 | 14,472 | 4,108 | 1,053 | 0 | | 1992 | 20
6 | 8
7 | 5,532 | 116 | 1,912 | 6,879 | 277 | 643 | 15,359 | 3,735 | 921
981 | 0 | | 1993
1994 | 5 | 7 | 5,539
5,358 | 124
138 | 1,641
1,663 | 7,096
7,154 | 474
281 | 384
522 | 15,259
15,117 | 3,372
4,316 | 1,039 | 0 | | 1994 | 3 | 7 | 5,361 | 127 | 1,673 | 7,154
7,211 | 215 | 535 | 15,117 | 3,859 | 973 | 0 | | 1996 | 2 | 7 | 5,732 | 99 | 1,834 | 7,331 | 282 | 603 | 15,882 | 3,799 | 1,231 | 0 | | 1997 | 110 | 8 | 5.344 | 106 | 1,540 | 7,606 | 323 | 1.153 | 16,073 | 4,267 | 1,067 | Ŏ | | 1998 | 2 | 8 | 5,215 | 121 | 1,777 | 7,510 | 274 | 1,153
752 | 15,650 | 3,358 | 1,194 | 0 | | 1999 | 82 | 8 | 5,441 | 143 | 1,617 | 7,699 | 220 | 612 | 15,732 | 4,059 | 1,196 | 0 | | 2000 | 1 | 10 | 5,276 | 144 | 1,769 | 8,394 | 309 | 721 | 16,613 | 4,548 | 1,221 | 0 | | 2001 | 2 | 8 | 5,371 | 120 | 2,425 | 8,021 | 241 | 806 | 16,984 | 4,171 | 884 | 0 | | 2002 | 1 | 8 | 4,866 | 65 | 2,352 | 8,164 | 253 | 466 | 16,166 | 3,963 | 1,115 | 0 | | 2003 | 1 | 8 | R 5,408 | 68 | 1,867 | 8,304 | 292 | 530 | R 16,468 | 4,444 | 1,154 | 0 | | 2004
2005 | 1 | 9
8 | 5,861
5,194 | 309
423 | 1,987
2,234 | 8,407
8,408 | 297
300 | 1,037
693 | 17,899
17,251 | 3,858
4,072 | 1,187
1,211 | 0
48 | | 2005 | 1 | 8 | 5,085 | 376 | 2,288 | 8,406 | 260 | 591 | 17,231 | 5,107 | 1,519 | 68 | | 2007 | 1 | 9 | 4.917 | 317 | 2,152 | 8,354 | 238 | 689 | 16,668 | 4,704 | 647 | 98 | | 2008 | Ó | 9 | R 4 420 | 266 | 2.263 | 7.987 | 238
R 227 | 689
R 227 | R 15.390 | 4,895 | 1,493 | 510 | | 2009 | Ő | 9 | R 4,807 | 512 | 2,423 | 7,964
R 7,866 | K 195 | K 368 | K 16.268 | 5,361 | 1,486 | 749 | | 2010 | 0 | 8 | R 4,807
R 4,609 | 222 | 2,423
2,357 | R 7,866 | R 157 | R 351 | ^R 15,563 | 4,782 | 1,347 | 851 | | 2011 | 0 | 9 | 4,778 | 231 | 2,255 | 7,607 | 150 | 295 | 15,316 | 4,907 | 1,425 | 831 | | | | | | | | | | | | | | | separately identified. a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. b Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other Petroleum." c Liquefied petroleum gases. d Motor gasoline as it is consumed; includes fuel ethanol blended into motor gasoline. e Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, and the 16 other petroleum products as described in the Technical Notes, Section 4, "Other Petroleum Products." f Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be ^g Includes denaturant. Pre-2005 estimates are not comparable to those for later years. See Section 5 of Technical Notes. NA = Not available. Where shown, R = Revised data and (s) = Value less than 0.5. Note: Totals may not equal sum of components due to independent rounding. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, Vermont (Trillion Btu) | | | | Г | | Fossi | l Fuels | | | | | Fossil
(as comi | | |------------|-------------------|--|------------------------|--------------------------|------------|---|----------------------|--------------------|--------------|--------------|--|--| | | | | | (as com | illigica) | | | | | | | | | Year | Coal | Natural Gas
excluding
Supplemental
Gaseous Fuels ^a | Distillate
Fuel Oil | Jet
Fuel ^b | LPG ° | Motor
Gasoline
excluding
Fuel Ethanol ^a | Residual
Fuel Oil | Other ^d | Total | Total | Natural Gas
including
Supplemental
Gaseous Fuels ^a | Motor
Gasoline
including
Fuel Ethanol | | 960 | 3.5 | 0.0 | 17.2 | 0.4 | 1.6 | 17.5 | 3.0 | 6.9 | 46.7 | 50.2 | 0.0 | 17.5 | | 965
970 | 2.7
2.1 | 0.0
2.7 | 25.0
33.4 | 0.4
0.7 | 1.8
2.1 | 19.9
26.7 | 5.7
5.7 | 6.2
5.4 | 58.9
73.9 | 61.6
78.7 | 0.0
2.7 | 19.9
26.7 | | 970 | 1.9 | 3.1 | 31.4 | 0.6 | 2.1 | 28.0 | 5.8 | 5.6 | 73.9 | 78.7
78.7 | 3.1 | 28.0 | | 972 | 1.4 | 3.8 | 33.1 | 1.4 | 2.7 | 29.8 | 5.9 | 4.5 | 73.7
77.4 | 82.6 | 3.8 | 29.8 | | 973 | 1.5 | 4.2 | 35.2 | 1.2 | 2.6 | 30.3 | 5.5 | 4.1 | 78.9 | 84.6 | 4.2 | 30.3 | | 974 | 1.5 | 4.8 | 29.5 | 1.1 | 2.7 | 29.6 | 3.3 | 3.7 | 70.0 | 76.2 | 4.8 | 29.6 | | 975 | 0.7 | 4.0 | 27.0 | 1.0 | 3.2 | 29.9 | 5.0 | 2.9 | 69.0 | 73.7 | 4.0 | 29.9 | | 976 | 0.6 | 3.7 | 31.9 | 0.8 | 3.6 | 31.6 | 7.9 | 3.3 | 79.0 | 83.3 | 3.7 | 31.6 | | 977 | 0.7 | 4.0 | 31.2 | 0.8 | 3.6 | 32.2 | 7.2 | 3.1 | 78.0 | 82.8 | 4.0 | 32.2 | | 978 | 0.5 | 3.8 | 30.8 | 0.7 | 4.5 | 33.1 | 6.2 | 2.9 | 78.2 | 82.5 | 3.8 | 33.1 | | 979
980 | 0.6
0.5 | 4.4
4.0 | 32.0
23.9 | 1.0
0.9 | 2.0
2.5 | 30.6
28.6 | 2.2
3.0 | 3.7
2.9 | 71.4
61.7 | 76.4
66.1 | 4.4
4.0 | 30.6
28.6 | | 980
981 | 1.0 | 4.0
4.4 | 23.9
22.2 | 0.9 | 2.5
2.4 | 28.9 | 3.0
2.2 | 2.9
2.5 | 58.7 | 64.0 | 4.0 | 28.9
28.9 | | 982 | 1.3 | 4.4 | 15.7 | 0.5 | 3.2 | 29.0 | 2.3 | 2.4 | 53.1 | 58.7 | 4.4 | 29.0 | | 983 | 1.2 | 4.3 | 20.0 | 0.6 | 3.2 | 29.3 | 2.0 | 2.8 | 58.0 | 63.4 | 4.3 | 29.3 | | 984 | 1.4 | 4.8 | 23.8 | 1.0 | 2.5 | 30.6 | 2.7 | 5.2 | 65.7 | 71.9 | 4.8 | 30.6 | | 985 | 2.0 | 5.0 | 26.7 | 1.1 | 3.0 | 30.5 | 0.8 | 6.4 | 68.5 | 75.4 | 5.0 | 30.5 | | 986 | 0.7 | 5.0 | 25.0 | 0.7 | 3.3 | 31.3 | 3.0 | 5.9 | 69.2 | 74.8 | 5.0 | 31.3 | | 987 | 0.3 | 5.1 | 28.1 | 1.0 | 4.2 | 34.3 | 2.1 | 6.0 | 75.7 | 81.2 | 5.1 | 34.3 | | 988 | 0.3 | 5.5 | 30.0 | 0.8 | 4.4 | 35.7 | 1.5 | 6.2 | 78.5 | 84.3 | 5.5 | 35.7 | | 989 | 0.2 | 6.1 | 28.9 | 1.2 | 5.7 | 34.4 | 1.2 | 6.0 | 77.6 | 83.9 | 6.1 | 34.4 | | 990 | 0.2 | 6.7 | 26.6 | 1.0 | 5.4 | 35.2 | 1.5 | 2.4 | 72.0 | 78.9 | 6.7 | 35.2 | | 991
992 | 0.3
0.5 | 7.0
7.6 | 27.7
32.2 | 0.9
0.6 | 6.2
7.3 | 35.6
36.1 | 1.7
1.7 | 5.5
4.0 | 77.6
82.0 | 84.9
90.1 | 7.0
7.6 | 35.6
36.1 | | 993 | 0.5 | 7.0 | 32.3 | 0.6 | 6.2 | 37.3 | 3.0 | 4.0
2.2 | 81.7 | 89.0 | 7.0 | 30. i
37.3 | | 994 | 0.1 | 7.3 | 31.2 | 0.8 | 6.3 | 37.4 | 1.8 | 2.2
3.2 | 80.7 | 88.1 | 7.2 | 37.4 | | 995 | 0.1 | 7.3 | 31.2 | 0.7 | 6.4 | 37.6 | 1.4 | 3.3 | 80.6 | 87.9 | 7.3 | 37.6 | | 996 | (s)
2.7 | 7.5 | 33.4 | 0.6 | 7.0 | 38.2 | 1.8 | 3.7 | 84.7 | 92.2 | 7.5 | 38.2 | | 997 | | 8.3 | 31.1 | 0.6 | 5.9 | 39.7 | 2.0 | 7.3 | 86.6 | 97.6 | 8.3 | 39.7 | | 98 | 0.1 | 7.8 | 30.4 | 0.7 | 6.8 | 39.1 | 1.7 | 4.4 | 83.2 | 91.0 | 7.8 | 39.1 | | 999 | 2.0 | 8.1 | 31.7 | 0.8 | 6.2 | 40.1 | 1.4 | 3.7 | 83.9 | 94.0 | 8.1 | 40.1 | | 000 | (s)
0.1 | 10.5 | 30.7 | 0.8 | 6.7 | 43.7 | 1.9 |
4.2 | 88.2 | 98.8 | 10.6 | 43.7 | | 001
002 | 0.1 | 7.9
8.4 | 31.3
28.3 | 0.7
0.4 | 9.2
9.0 | 41.8
42.5 | 1.5
1.6 | 4.9
2.8 | 89.3
84.6 | 97.3
93.0 | 8.0
8.4 | 41.8
42.5 | | 002 | (s)
(s) | 8.4
8.4 | R 31.5 | 0.4 | 9.0
7.1 | 42.5
43.2 | 1.8 | 3.1 | R 87.2 | R 95.7 | 8.5 | 42.5
43.2 | | 103 | (S) | 8.7 | 34.1 | 1.8 | 7.1 | 43.2 | 1.9 | 6.3 | 95.5 | 104.3 | 8.7 | 43.2
43.8 | | 004 | (3) | 8.4 | 30.3 | 2.4 | 8.5 | 43.7 | 1.9 | 4.1 | 90.8 | 99.2 | 8.4 | 43.9 | | 006 | (s)
(s)
(s) | 8.1 | 29.6 | 2.1 | 8.7 | 43.6 | 1.6 | 3.5 | 89.2 | 97.2 | 8.1 | 43.9 | | 007 | (s) | 8.9 | 28.6 | 1.8 | 8.2 | 43.3 | 1.5 | 12 | 87.6 | 96.5 | 8.9 | 43.6 | | 800 | 0.0 | 8.7 | R 25.7 | 1.5 | 8.6 | 39.9 | R 1 1 | R13 | R 78 6 | R 87 2 | 8.7 | 41.7 | | 009 | 0.0 | 8.7 | R 28.0 | 2.9 | 9.3 | 39.0 | K12 | K 2.2 | K 82.6 | K 91.2 | 8.7 | 41.6 | | 010 | 0.0 | 8.5 | R 26.8 | 1.3 | 9.0 | R 38.1 | R 1.0 | R 2.1 | R 78.3 | R 86.8 | 8.5 | R 41.0 | | 011 | 0.0 | 8.7 | 27.8 | 1.3 | 8.6 | 36.8 | 0.9 | 1.8 | 77.3 | 86.0 | 8.7 | 39.7 | ^a Supplemental gaseous fuels (SGF) and fuel ethanol are consumed with natural gas and motor gasoline, respectively. In this table, natural gas excluding SGF and motor gasoline excluding fuel ethanol are presented so that a fossil fuel total can be calculated. Natural gas including SGF and motor gasoline including fuel ethanol are presented separately for reference. b Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other Petroleum." ^C Liquefied petroleum gases. d Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, and the 16 other petroleum products as described in the Technical Notes, Section 4, "Other Petroleum Products." Where shown, R = Revised data and (s) = Value less than +0.05 and greater than -0.05 trillion Btu. Note: Totals may not equal sum of components due to independent rounding. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, Vermont (Continued) (Trillion Btu) | | | | | | R | enewable Energ | у | | | | | | | |--------------|------------------------------|--|--------------------------------|-------------------|--|----------------|-----------------|-----------------------|------------|----------------|--------------------------------------|--|--------------------| | | | | | Bior | nass | | | | | | Net | | | | Year | Nuclear
Electric
Power | Hydro-
electric
Power ^e | Wood and
Waste ^f | Fuel
Ethanol 9 | Losses
and Co-
products ^h | Total | Geo-
thermal | Solar/PV ⁱ | Wind | Total | Interstate
Flow of
Electricity | Net
Electricity
Imports ^k | Total | | 1960 | 0.0 | 9.4 | 7.9 | NA | NA | 7.9 | 0.0 | NA | NA | 17.3 | 0.9 | 0.2 | 68.6 | | 1965 | 0.0 | 7.5 | 6.9 | NA | NA | 6.9 | 0.0 | NA | NA | 14.4 | 6.9 | 0.1 | 83.1 | | 1970 | 0.0 | 8.2 | 6.5 | NA | NA | 6.5 | 0.0 | NA | NA | 14.7 | 19.6 | 0.2 | 113.2 | | 1971 | 0.0 | 7.8 | 6.8 | NA | NA | 6.8 | 0.0 | NA | NA | 14.6 | 23.5 | 0.2 | 117.0 | | 1972 | 1.8 | 9.8 | 6.2 | NA | NA | 6.2 | 0.0 | NA | NA | 16.0 | 23.3 | 0.3 | 123.9 | | 1973 | 17.4 | 11.0 | 6.1 | NA | NA | 6.1 | 0.0 | NA | NA | 17.1 | 7.1 | 0.2 | 126.4 | | 1974 | 27.7 | 10.4 | 5.8 | NA | NA | 5.8 | 0.0 | NA | NA | 16.1 | -3.5 | 0.3 | 116.8 | | 1975 | 39.2 | 9.8 | 6.6 | NA | NA | 6.6 | 0.0 | NA | NA | 16.4 | -15.2 | 0.3 | 114.4 | | 1976
1977 | 36.0
38.1 | 11.3
10.0 | 8.0
9.4 | NA
NA | NA
NA | 8.0
9.4 | 0.0
0.0 | NA
NA | NA
NA | 19.3
19.4 | -7.0
-11.2 | 0.2
0.3 | 131.8
129.4 | | 1977 | 35.5 | 9.1 | 9.4
11.4 | NA
NA | NA
NA | 9.4
11.4 | 0.0 | NA
NA | NA
NA | 20.5 | -11.2
-4.4 | 0.3 | 134.5 | | 1979 | 37.5 | 9.6 | 12.7 | NA
NA | NA
NA | 12.7 | 0.0 | NA
NA | NA
NA | 22.3 | -4.4
-5.0 | 0.4 | 131.8 | | 1980 | 32.5 | 8.4 | 14.4 | NA | NA | 14.4 | 0.0 | NA | NA | 22.9 | 3.7 | 0.6 | 125.8 | | 1981 | 39.4 | 10.5 | 14.3 | 0.0 | 0.0 | 14.3 | 0.0 | NA
NA | NA
NA | 24.8 | -8.2 | 0.6 | 120.7 | | 1982 | 46.2 | 8.8 | 13.8 | 0.0 | 0.0 | 13.8 | 0.0 | NA | NA | 22.7 | -13.1 | 0.7 | 115.2 | | 1983 | 31.3 | 10.6 | 16.0 | 0.0 | 0.0 | 16.0 | 0.0 | NA | 0.0 | 26.6 | 1.3 | 0.7 | 123.3 | | 1984 | 36.2 | 9.9 | 16.1 | 0.0 | 0.0 | 16.1 | 0.0 | 0.0 | 0.0 | 26.0 | -2.1 | 0.8 | 132.8 | | 1985 | 31.9 | 9.6 | 17.3 | 0.0 | 0.0 | 17.3 | 0.0 | 0.0 | 0.0 | 26.9 | -0.7 | 1.1 | 134.5 | | 1986 | 21.8 | 10.9 | 13.0 | 0.0 | 0.0 | 13.0 | 0.0 | 0.0 | 0.0 | 23.9 | 2.1 | 5.7 | 128.3 | | 1987 | 36.9 | 10.4 | 12.8 | 0.0 | 0.0 | 12.8 | 0.0 | 0.0 | 0.0 | 23.1 | -11.5 | 7.8 | 137.5 | | 1988 | 43.6 | 9.1 | 12.6 | 0.0 | 0.0 | 12.6 | 0.0 | 0.0 | 0.0 | 21.7 | -14.6 | 9.6 | 144.6 | | 1989 | 38.2 | 10.9 | 9.1 | 0.0 | 0.0 | 9.1 | 0.0 | (s) | 0.0 | 20.0 | -6.2 | 6.7 | 142.5 | | 1990
1991 | 38.3
43.1 | 14.2
11.0 | 5.3
6.3 | 0.0
0.0 | 0.0
0.0 | 5.3
6.3 | 0.0
0.0 | (s)
(s) | 0.0
0.0 | 19.5
17.3 | -16.3
-18.5 | 5.8
5.8 | 126.1
132.6 | | 1991 | 39.1 | 9.5 | 6.5 | 0.0 | 0.0 | 6.5 | 0.0 | (S)
(S) | 0.0 | 16.0 | -16.5
-14.0 | 5.6
7.1 | 138.3 | | 1992 | 35.4 | 10.1 | 8.1 | 0.0 | 0.0 | 8.1 | 0.0 | (s) | 0.0 | 18.2 | -14.0
-15.0 | 8.9 | 136.6 | | 1994 | 45.1 | 10.7 | 8.3 | 0.0 | 0.0 | 8.3 | 0.0 | (s) | 0.0 | 19.1 | -26.6 | 10.4 | 136.0 | | 1995 | 40.5 | 10.0 | 9.1 | 0.0 | 0.0 | 9.1 | 0.0 | (s) | 0.0 | 19.2 | -27.8 | 13.5 | 133.3 | | 1996 | 39.9 | 12.7 | 9.1 | 0.0 | 0.0 | 9.1 | 0.0 | (s) | 0.0 | 21.9 | -25.9 | 12.0 | 140.1 | | 1997 | 44.8 | 10.9 | 9.0 | 0.0 | 0.0 | 9.0 | 0.0 | (s) | 0.0 | 19.9 | -31.0 | 13.6 | 144.9 | | 1998 | 35.2 | 12.2 | 8.1 | 0.0 | 0.0 | 8.1 | 0.0 | (s) | 0.0 | 20.3 | -23.4 | 13.2 | 136.3 | | 1999 | 42.4 | 12.2 | 8.4 | 0.0 | 0.0 | 8.4 | (s) | (s) | 0.1 | 20.8 | -48.8 | 26.2 | 134.6 | | 2000 | 47.4 | 12.5 | 8.8 | 0.0 | 0.0 | 8.8 | (s) | (s) | 0.1 | 21.4 | -33.4 | 13.4 | ₅ 147.5 | | 2001 | 43.6 | 9.1 | 8.0 | 0.0 | 0.0 | 8.0 | (s) | (s) | 0.1 | 17.3 | R -20.6 | 10.2 | R 147.8 | | 2002 | 41.4 | 11.3 | 11.2 | 0.0 | 0.0 | 11.2 | (s) | (s) | 0.1 | 22.7
R 24.1 | R -17.0 | 8.3 | R 148.4 | | 2003 | 46.3 | R 11.7 | 12.2 | 0.0 | 0.0 | 12.2 | (s) | (s) | 0.1 | | R -21.4
R -11.9 | 6.5 | R 151.1
R 161.3 | | 2004
2005 | 40.2
42.5 | 11.9
12.1 | 10.0
R 12.0 | 0.0
0.2 | 0.0
0.0 | 10.0
12.2 | (s) | (s) | 0.1
0.1 | 22.0
24.5 | R-11.9
R-13.6 | 6.6
7.2 | R 159.9 | | 2005 | 42.5
53.3 | 12.1 | 12./ | 0.2 | 0.0 | 12.6 | (s)
(s) | (s)
0.1 | 0.1 | ∠4.5
27.0 | R -29.8 | 7.2
8.3 | R 159.9
R 156.9 | | 2006 | 49.3 | 6.4 | R 12.1 | 0.2 | 0.0 | R 12.4 | (S) | 0.1 | 0.1 | 27.8
R 19.0 | R -17.7 | 8.5 | R 155.6 | | 2007 | 51.2 | 14.7 | R 12.1 | 1.8 | 0.0 | R 13.9 | (s) | 0.1 | 0.1 | R 28.8 | R -28.2 | 8.5 | R 147.5 | | 2009 | 56.1 | 14.5 | R 16.8 | 2.6 | 0.0 | R 10 4 | (s) | 0.1 | 0.1 | R 3/1 2 | K <u>-</u> 35 5 | 8.7 | R 154.7 | | 2010 | 50.0 | 13.1 | R 16.7 | 3.0 | 0.0 | R 19.6 | (s) | 0.2 | 0.1 | R 33.1 | R -27.4 | 8.3 | R 150.8 | | 2011 | 51.4 | 13.8 | 16.0 | 2.9 | 0.0 | 18.9 | (s) | 0.2 | 0.3 | 33.4 | -30.0 | 8.6 | 149.3 | | | | | | | | -17 | 1-7 | | | | | | | ^e Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. during the year. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. f Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. ⁹ Excludes denaturant. Pre-2005 estimates are not comparable to those for later years. See Section 5 of Technical Notes. h Losses and co-products from the production of fuel ethanol. Solar thermal and photovoltaic energy. I clinical solar thermal and photovoltaic energy. Includes the energy losses associated with the generation, transmission, and distribution of the electricity flowing across state lines. A positive number indicates that more electricity came into the state than went out of the state k Electricity traded with Canada and Mexico. Calculated by converting net imports in kilowatthours by 3,412 Btu per kilowatthour. NA = Not available. Where shown, R = Revised data and (s) = Value less than +0.05 and greater than -0.05 trillion Btu. Note: Totals may not equal sum of components due to independent rounding. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT3. Total End-Use Energy Consumption Estimates, Selected Years, 1960-2011, Vermont | | | | | | | Petroleum | | | | Hydro- | Bio | mass | | | Retail | | | | |--------------|------------------------|-----------------------------|------------------------|--------------------------|------------------|--------------------------------|----------------------|--------------------|------------------|----------------------------------|-------------------------------------|--|------------------------------|--|-------------------------------|------------------------------|---|----------------------| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil | Jet
Fuel ^b | LPG ^c | Motor
Gasoline ^d | Residual
Fuel Oil | Other ^e | Total | electric
Power ^{f,g} | | | | Solar | Electricity
Sales | | Electrical | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | · | TI | nousand Barre | ıls | | | Million
Kilowatt-
hours | Wood
and
Waste
^{g,h} | Losses
and Co-
products ⁱ | Geo-
thermal ^g | Thermal/
Photo-
voltaic ⁹ | Million
Kilowatt-
hours | Net
Energy ^{g,j} | System
Energy
Losses ^k | Total ^{g,j} | | 1960 | 118 | 0 | 2.949 | 82 | 404 | 3,332 | 477 | 1.178 | 8.421 | 64 | | | | | 875 | | | | | 1965 | 62 | 0 | 4,247 | 79 | 450 | 3,789 | 906 | 1,059 | 10,531 | 53 | | | | | 1,333 | == | | | | 1970 | 32 | 3 | 5,474 | 121 | 542 | 5,077 | 882 | 898 | 12,994 | 62 | | | | | 2,612 | | | | | 1975 | 18 | 3 | 4,603 | 129 | 833 | 5,698 | 795 | 502 | 12,561 | 67 | | | | | 2,995 | | | | | 1980 | 13 | 4 | 4,050 | 137 | 666 | 5,437 | 471 | 506 | 11,267 | 70 | | | | | 3,951 | | | | | 1985 | 52 | 5 | 4,550 | 201 | 791 | 5,813 | 122 | 1,065 | 12,540 | 70 | | | | | 4,015 | | | | | 1990 | 8 | 6 | 4,558 | 180 | 1,401 | 6,696 | 237 | 419 | 13,491 | 17 | | | | | 4,716 | | | | | 1995 | 3 | 7 | 5,322 | 127 | 1,673 | 7,211 | 215 | 535 | 15,083 | 18 | | | | | 5,104 | | | | | 2000 | 1 | 9 | 5,116 | 144 | 1,769 | 8,394 | 309 | 721 | 16,454 | 20 | | | | | 5,639 | | | | | 2001
2002 | 2 | 8 | 5,284
4.835 | 120
65 | 2,425 | 8,021 | 241
253 | 806
466 | 16,897
16,135 | 16
16 | | | | | 5,585
5.629 | | | | | 2002 | 1 | 8 | R 5,351 | 68 | 2,352
1,867 | 8,164
8,304 | 292 | 530 | R 16,412 | 6 | | | | | 5,829 | | | | | 2003 | 1 | 9 | 5,816 | 309 | 1,987 | 8,407 | 292 | 1,037 | 17.854 | 21 | | | | | 5,664 | | | | | 2005 | 1 | 8 | 5,181 | 423 | 2,234 | 8,408 | 300 | 693 | 17,239 | 21 | | | | | 5.883 | | | | | 2006 | 1 | 8 | 5,077 | 376 | 2,288 | 8,406 | 260 | 591 | 16,998 | 22 | | | | | 5.795 | | | | | 2007 | 1 | 9 | 4,909 | 317 | 2,152 | 8,354 | 238 | 689 | 16,659 | 2 | | | | | 5,864 | | | | | 2008 | 0 | 9 | R 4,414 | 266 | 2,263 | 7,987 | R 226 | R 227 | R 15,383 | 21 | | | | | 5,741 | | | | | 2009 | 0 | 9 | R 4,804 | 512 | 2,423 | 7,964 | R 194 | R 368 | R 16,264 | 25 | | | | | 5,497 | | | | | 2010 | 0 | 8 | R 4,604 | 222 | 2,357 | ^R 7,866 | ^R 157 | R 351 | R 15,557 | 25 | | | | | 5,595 | | | | | 2011 | 0 | 9 | 4,771 | 231 | 2,255 | 7,607 | 149 | 295 | 15,309 | 24 | | | | | 5,550 | | | | | | | | | | | | | | Trillion | Btu | | | | | | | | | | 1960 | 3.0 | 0.0 | 17.2 | 0.4 | 1.6 | 17.5 | 3.0 | 6.9 | 46.6 | 0.7 | 7.9 | NA | NA | NA | 3.0 | 61.2 | 7.4 | 68.6 | | 1965 | 1.5 | 0.0 | 24.7 | 0.4 | 1.8 | 19.9 | 5.7 | 6.2 | 58.7 | 0.6 | 6.9 | NA | NA | NA | 4.5 | 72.3 | 10.9 | 83.1 | | 1970 | 0.8 | 2.7 | 31.9 | 0.7 | 2.1 | 26.7 | 5.5 | 5.4 | 72.2 | 0.6 | 6.5 | NA | NA | NA | 8.9 | | 21.6 | 113.2 | | 1975 | 0.4 | 3.4 | 26.8 | 0.7 | 3.2 | 29.9 | 5.0 | 2.9 | 68.5 | 0.7 | 6.6 | | NA | NA | 10.2 | | 24.5 | 114.4 | | 1980 | 0.3 | 3.7 | 23.6 | 0.8 | 2.5 | 28.6 | 3.0 | 2.9 | 61.3 | 0.7 | 13.9 | NA | NA | NA | | | 32.4 | 125.8 | | 1985 | 1.3 | 4.9 | 26.5 | 1.1 | 3.0 | 30.5 | 0.8 | 6.4 | 68.3 | 0.7 | 14.3 | 0.0 | NA | NA (-) | 13.7 | 103.2 | 31.4 | 134.5 | | 1990
1995 | 0.2
0.1 | 6.0
7.1 | 26.6
31.0 | 1.0
0.7 | 5.4
6.4 | 35.2
37.6 | 1.5
1.4 | 2.4
3.3 | 72.0
80.3 | 0.2
0.2 | 4.3
5.7 | 0.0 | 0.0 | (s) | 16.1
17.4 | 98.7
110.8 | 27.4
22.4 | 126.1
133.3 | | 2000 | (s) | 9.5 | 29.8 | 0.7 | 6.7 | 43.7 | 1.4 | 4.2 | 87.3 | 0.2 | 4.9 | 0.0 | (s) | (s)
(s) | 17.4 | | 26.4 | 147.5 | | 2000 | 0.1 | 7.9 | 30.8 | 0.7 | 9.2 | 41.8 | 1.5 | 4.2 | 88.8 | 0.2 | 4.5 | 0.0 | (s) | (s) | 19.1 | 120.0 | R 27.8 | R 147.8 | | 2002 | (s) | 8.4 | 28.2 | 0.4 | 9.0 | 42.5 | 1.6 | 2.8 | 84.4 | 0.2 | 2.8 | | (s) | (s) | 19.2 | | R 33.4 | R 148.4 | | 2002 | (s) | 8.4 | R 31.2 | 0.4 | 7.1 | 43.2 | 1.8 | 3.1 | R 86.9 | 0.1 | 2.8 | 0.0 | (s) | (s) | 18.3 | | R 34.6 | R 151 1 | | 2004 | (s) | 8.7 | 33.9 | 1.8 | 7.6 | 43.8 | 1.9 | 6.3 | 95.3 | 0.2 | 3.2 | 0.0 | (s) | (s) | 19.3 | | R 34.6 | R 161.3 | | 2005 | (s) | 8.4 | 30.2 | 2.4 | 8.5 | 43.9 | 1.9 | 4.1 | 90.9 | 0.2 | 6.8 | 0.0 | (s) | (s) | 20.1 | 126.4 | R 33.5 | R 159.9 | | 2006 | (s) | 8.0 | 29.6 | 2.1 | 8.7 | 43.9 | 1.6 | 3.5 | 89.3 | 0.2 | 6.5 | 0.0 | (s) | 0.1 | 19.8 | | R 32.9 | R 156.9 | | 2007 | (s) | 8.8 | _ 28.6 | 1.8 | 8.2 | 43.6 | _ 1.5 | _ 4.2 | _ 87.9 | (s) | R 6.0 | 0.0 | (s) | 0.1 | 20.0 | | R 32.7 | R 155.6 | | 2008 | 0.0 | 8.6 | R 25.7 | 1.5 | 8.6 | 41.7 | R 1.4 | R 1.3 | R 80.3 | 0.2 | R 6.5 | 0.0 | (s) | 0.1 | 19.6 | | R 32.2 | R 147.5 | | 2009 | 0.0 | 8.6 | R 28.0 | 2.9 | 9.3 | 41.6 | R 1.2 | R 2.2 | R 85.1 | 0.2 | R 11.2 | | (s) | 0.1 | 18.8 | R 124.1 | R 30.7 | R 154.7 | | 2010 | 0.0 | 8.4 | R 26.8 | 1.3 | 9.0 | R 41.0 | R 1.0 | R 2.1 | R 81.2 | 0.2 | R 10.2 | 0.0 | (s) | 0.2 | | R 119.4 | R 31.4 | R 150.8 | | 2011 | 0.0 | 8.6 | 27.8 | 1.3 | 8.6 | 39.7 | 0.9 | 1.8 | 80.2 | 0.2 | 10.5 | 0.0 | (s) | 0.2 | 18.9 | 118.7 | 30.6 | 149.3 | ^a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. ethanol blended into motor gasoline that is not included in the motor gasoline column. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. ^b Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Other Petroleum." ^c Liquefied petroleum gases. ^d Beginning in 1993, includes fuel ethanol blended into motor gasoline. ^e Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, and the 16 other petroleum products as described in the Technical Notes, Section 4, "Other Petroleum Products." f Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. ⁹ There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. h Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. i Losses and co-products from the production of fuel ethanol. J Beginning in 2009, includes wind energy consumed by the commercial and industrial sectors. From 1981 through 1992, includes fuel k Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. ^{-- =} Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Total end-use consumption estimates are the sum of the consumption estimates for the residential, commercial, industrial, and transportation sectors. • Totals may not equal sum of components due to independent rounding. • The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. • See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT4. Residential Sector Energy Consumption Estimates, Selected Years, 1960-2011, Vermont | | | | | Petro | oleum | | Biomass | | | | | | | |--------------|------------------------|-----------------------------|------------------------|--------------|------------------|---------------------------------------|-------------------|-------------------------|-------------------------|--------------------------------|------------------------------|----------------------|------------------| | | Coal ^a | Natural
Gas ^b | Distillate
Fuel Oil | Kerosene | LPG ^c | Total | Wood ^d | | | Retail
Electricity
Sales | | Electrical
System | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | Thousar | nd Barrels | | Thousand
Cords | Geothermal ^e | Solar/PV ^{e,f} | Million
Kilowatthours | Net
Energy ^{e,g} | Energy
Losses h | Total e,g | | 1960 | 45 | 0 | 2,044 | 701 | 208 | 2,953 | 173 | | | 451 | | | | | 1965 | 45
27 | ŏ | 3,110 | 649 | 255 | 4,014 | 137 | | | 678 | | | | | 1970 | 16 | 1 | 3,873 | 436 | 287 | 4,596 | 105 | | | 1,216 | | | | | 1975
1980 | 5 | 1 | 3,101
2,171 | 235
230 | 447
287 | 3,783
2,688 | 123
215 | | | 1,427
1.781 | | | | | 1985 | 2
10 | 1 | 2,171 | 514 | 484 | 3,481 | 155 | | | 1,538 | | | | | 1990 | 1 | 2 | 2,293 | 193 | 894 | 3,380 | 99 | | | 1,809 | | | | | 1995 | (s) | 2 | 2,321 | 180 | 985 | 3,487 | 108 | | | 1,973 | | | | | 1996 | (s) | 3 | 2,368 | 203 | 1,111 | 3,682 | 113 | | | 2,006 | | | | | 1997
1998 | (s)
(s) | 3 | 2,309
2,008 | 238
326 | 990
1,118 | 3,538
3,452 | 82
73 | | | 1,992
1,951 | | | | | 1999 | (S) | 3 | 2,006 | 262 | 1,093 | 3,452 | 73
74 | | | 1,999 | | | | | 2000 | (s) | 3 | 2,450 | 326 | 1.059 | 3.836 | 80 | | | 2,037 | | | | | 2001 | (s) | 3 | 2,220 | 320 | 1,454
1,454 | 3,994
_ 3,754 | 65 | | | 2,009 | | | | | 2002 | (s) | 3 | 2,114 | 186 | 1,454 | 3,754 | 66 | | | 2,047 | | | | | 2003
2004 | (s) | 3 | R 2,371
2,696 | 276
400 | 1,200
1,212 | R 3,847
4,308 | 69
71 | | | 2,011
2,109 | | | | | 2004 | (s)
(s) | 3 | 2,090 | 381 | 1,456 | 4,308 | 196 | | | 2,109 | | | | | 2006 | (s) | 3 | 2.119 | 355 | 1.354 | 3.828 | 17/ | | | 2,142 | | | | | 2007 | (s) | 3 | _ 2,157 | _ 248 | 1,286 | _ 3,691 | R 192 | | | 2,170 | | | | | 2008 | 0 | 3 | R 1,869 | R 109 | 1,291 | R 3,269 | K 215 | | | 2,133 | | | | | 2009
2010 | 0 | 3
3 | R 2,022
R 1,676 | R 168
150 | 1,561
1,544 | R 3,752
R 3,370 | R 427
R 373 | | | 2,122
2,128 | | | | | 2010 | 0 | 3 | 1,764 | 104 | 1,326 | 3,194 | 381 | | | 2,125 | | | | | | <u> </u> | · · · | ., | | .,,,, | · · · · · · · · · · · · · · · · · · · | rillion Btu | | | _, | | | | | 4000 | 4.4 | 0.0 | 44.0 | 4.0 | 0.0 | | | NIA. | NIA. | 4.5 | 00.0 | 2.2 | 00.0 | |
1960
1965 | 1.1
0.7 | 0.0
0.0 | 11.9
18.1 | 4.0
3.7 | 0.8
1.0 | 16.7
22.8 | 3.5
2.7 | NA
NA | NA
NA | 1.5
2.3 | 22.8
28.5 | 3.8
5.5 | 26.6
34.0 | | 1903 | 0.4 | 1.1 | 22.6 | 2.5 | 1.1 | 26.1 | 2.1 | NA
NA | NA
NA | 4.1 | 33.8 | 10.0 | 43.9 | | 1975 | 0.1 | 1.1 | 18.1 | 1.3 | 1.7 | 21.1 | 2.5 | NA | NA | 4.9 | 29.7 | 11.7 | 41.4 | | 1980 | 0.1 | 1.3 | 12.6 | 1.3 | 1.1 | 15.1 | 4.3 | NA | NA | 6.1 | 26.8 | 14.6 | 41.4 | | 1985 | 0.2 | 1.4 | 14.5 | 2.9 | 1.9 | 19.2 | 3.1 | NA | NA | 5.2 | 29.3 | 12.0 | 41.3 | | 1990
1995 | (s)
(s) | 2.1
2.3 | 13.4
13.5 | 1.1
1.0 | 3.4
3.8 | 17.9
18.3 | 2.0
2.2 | 0.0
0.0 | (s)
(s) | 6.2
6.7 | 28.2
29.5 | 10.5
8.7 | 38.7
38.2 | | 1996 | (s) | 2.6 | 13.8 | 1.2 | 4.3 | 19.2 | 2.3 | 0.0 | (s) | 6.8 | 30.9 | 9.4 | 40.3 | | 1997 | (s) | 2.7 | 13.4 | 1.4 | 3.8 | 18.6 | 1.6 | 0.0 | (s) | 6.8 | 29.7 | 9.0 | 38.7 | | 1998 | (s) | 2.5 | 11.7 | 1.8 | 4.3 | 17.8 | 1.5 | 0.0 | (s) | 6.7 | 28.5 | 8.4 | 36.9 | | 1999
2000 | (s) | 2.6
2.9 | 11.7 | 1.5 | 4.2
4.1 | 17.4
20.2 | 1.5
1.6 | (s) | (s) | 6.8 | 28.4
31.7 | 6.5
9.5 | 34.8
41.2 | | 2000 | (s)
(s) | 2.9
2.8 | 14.3
12.9 | 1.8
1.8 | 4.1
5.6 | 20.2 | 1.5 | (s)
(s) | (s)
(s) | 7.0
6.9 | 31.7 | R 10.0 | R 41.2 | | 2002 | (s) | 2.8 | 12.2 | 1.1 | 5.6 | 18 0 | 1.3 | (s) | (s) | 7.0 | 30.1 | K 12 1 | R 122 | | 2003 | (s) | 3.1 | R 13.8 | 1.6 | 4.6 | R 20.0 | 1.4 | (s) | (s) | 6.9 | R 31.4 | K 13.0 | R 44 4 | | 2004 | (s) | 3.1 | 15.7 | 2.3 | 4.7 | 22.6 | 1.4 | (s) | (s) | 7.2 | 34.4 | K 12.9 | R 47.3
R 47.9 | | 2005 | (s) | 3.1 | 13.1 | 2.2 | 5.6 | 20.9 | 3.9 | (s) | (s) | 7.5 | 35.4 | R 12.5
R 12.2 | R 47.9
R 45.5 | | 2006
2007 | (s)
(s) | 2.9
3.2 | 12.3
12.6 | 2.0
1.4 | 5.2
4.9 | 19.6
18.9 | 3.5
R 3.8 | (s)
(s) | 0.1
0.1 | 7.3
7.4 | 33.3
R 33.4 | R 12.2 | R 45.5 | | 2007 | 0.0 | 3.1 | R 10 9 | R n e | 5.0 | R 16.5 | R 4 3 | (s) | 0.1 | 7.3 | R 31 2 | R 12 0 | K 43 2 | | 2009 | 0.0 | 3.2 | K 11 8 | R 1.0 | 6.0 | ^R 18 7 | R 8.5
R 7.5 | (s) | 0.1 | 7.2 | R 37.9 | K 11 8 | R 49.7
R 46.5 | | 2010 | 0.0 | 3.1 | R 9.8 | 0.9 | 5.9 | K 16.5 | K 7.5 | (s) | 0.2 | 7.3 | R 34.5 | ^R 11.9 | K 46.5 | | 2011 | 0.0 | 3.2 | 10.3 | 0.6 | 5.1 | 16.0 | 7.6 | (s) | 0.2 | 7.2 | 34.3 | 11.7 | 46.0 | in net energy and total. ^a Beginning in 2008, data are no longer collected and are assumed to be zero. ^b Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. c Liquefied petroleum gases. d Wood and wood-derived fuels. There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of services and sources beginning in 1989. the commercial and industrial sectors. g Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once h Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. of reclinical voices for all explanation of changes in methodology. — = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete_cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT5. Commercial Sector Energy Consumption Estimates, Selected Years, 1960-2011, Vermont | | | | | | Peti | roleum | | | 111 | Biomass | | D. (-1) | | | | |--------------|------------------------|-----------------------------|------------------------|----------------|------------|--------------------------------|----------------------|--------------------|--|--------------------------|-------------------------|--------------------------------|------------------------------|---|----------------------| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil | Kerosene | LPG b | Motor
Gasoline ^c | Residual
Fuel Oil | Total ^d | Hydro-
electric
Power ^{e,f} | Wasal | | Retail
Electricity
Sales | | Electrical | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | | Thousa | nd Barrels | | | Million
Kilowatthours | Wood
and
Waste f,g | Geothermal ^f | Million
Kilowatthours | Net
Energy ^{f,h} | System
Energy
Losses ⁱ | Total ^{f,h} | | 1960 | 31 | 0 | 418 | 43 | 96 | 127 | 225 | 909 | NA | | | 233 | | | | | 1965 | 21 | Ö | 418
636 | 40 | 117 | 24 | 225
422 | 1,239 | NA | | | 303 | | | | | 1970 | 13 | 1 | 792 | 27 | 132 | 25 | 414 | 1,390 | NA | | | 609 | | | | | 1975
1980 | 11
9 | 1 | 634
620 | 15
44 | 206
132 | 30
33 | 373
237 | 1,257
1,065 | NA
NA | | | 709
923 | | | | | 1985 | 36 | 2 | 591
669 | 36 | 223 | 40 | 24 | 914 | NA | | | 959 | | | | | 1990 | 6 | 2 | 669 | 12 | 411 | 41 | 119 | 1,253 | 0 | | | 1,526 | | | | | 1995
1996 | 3 | 3 | 692
795 | 14 | 453
511 | 7 | 71 | 1,236
1,399 | 0 | | | 1,647
1,696 | | | | | 1996 | 1 2 | 3 | 795
850 | 13
21 | 511
455 | 7 | 72
111 | 1,399 | 0 | | | 1,696 | | | | | 1998 | 2 | 3 | 938 | 32 | 514 | 7 | 107 | 1,597 | ő | | | 1,878 | | | | | 1999 | 2 | 2 | 946 | 35 | 503 | 7 | 71 | 1,561 | 0 | | | 1,941 | | | | | 2000 | 1 | 3
2 | 1,040 | 23 | 487 | 7
7 | 101 | 1,659 | 0 | | | 1,956 | | | | | 2001
2002 | 2 | 2 | 1,009
865 | 35
16 | 668
669 | 7 | 92
121 | 1,811
1,677 | 0 | | | 1,968
1,991 | | | | | 2002 | i | 3 | R 971 | 21 | 524 | 7 | 151 | R 1,674 | 0 | | | 1,881 | | | | | 2004 | 1 | 3 | 1,036 | 34 | 625 | 7 | 147 | 1,848 | 0 | | | 1,978 | | | | | 2005 | 1 | 3 | 858
812 | 31
26 | 511 | 7 | 145
130 | 1,552 | 0 | | | 2,051
2,027 | | | | | 2006
2007 | 1 | 2 | 812
766 | 26
27 | 516
642 | 7 | 130
87 | 1,491
1,529 | 0
0 | | | 2,027 | | | | | 2008 | Ó | 2 | R 561 | R ₆ | 778 | 7 | R 109 | R 1 /61 | 0 | | | 2,043 | | | | | 2009 | Ö | 2 | R 701 | 14 | 766 | 7 | R 89 | R 1 576 | 0 | | | 1,991 | | | | | 2010 | 0 | 2 | R 668 | 8 | 737 | 7 | R 59 | K 1,479 | 0 | | | 2,021 | | | | | 2011 | 0 | 2 | 645 | 9 | 851 | 7 | 53 | 1,564 | 0 | | | 2,009 | | | | | | | | | | | | | Trillion Btu | | | | | | | | | 1960 | 0.8 | 0.0 | 2.4 | 0.2 | 0.4 | 0.7 | 1.4 | 5.1 | NA | 0.1 | NA | 0.8 | 6.8 | 2.0 | 8.7 | | 1965
1970 | 0.5 | 0.0 | 3.7 | 0.2
0.2 | 0.4 | 0.1 | 2.7 | 7.2
8.0 | NA | 0.1 | NA
NA | 1.0 | 8.7 | 2.5 | 11.2 | | 1970 | 0.3
0.2 | 0.6
0.8 | 4.6
3.7 | 0.2 | 0.5
0.8 | 0.1
0.2 | 2.6
2.3 | 7.1 | NA
NA | (s)
(s) | NA
NA | 2.1
2.4 | 11.0
10.5 | 5.0
5.8 | 16.0
16.3 | | 1980 | 0.2 | 8.0 | 3.6 | 0.2 | 0.5 | 0.2 | 1.5 | 6.0 | NA | 0.1 | NA | 3.1 | 10.3 | 7.6 | 17.9 | | 1985 | 0.9 | 1.6 | 3.4 | 0.2 | 0.9 | 0.2 | 0.1 | 4.9 | NA | 0.1 | NA | 3.3 | 10.6 | 7.5 | 18.1 | | 1990
1995 | 0.1
0.1 | 2.0
2.7 | 3.9
4.0 | 0.1
0.1 | 1.6
1.7 | 0.2 | 0.7
0.4 | 6.5
6.3 | 0.0
0.0 | 0.2
0.3 | 0.0
0.0 | 5.2
5.6 | 14.1
15.0 | 8.9 | 23.0
22.2 | | 1995 | | 2.7 | 4.6 | 0.1 | 2.0 | (s)
(s) | 0.4 | 7.2 | 0.0 | 0.3 | 0.0 | 5.8 | 16.2 | 7.2
7.9 | 24.1 | | 1997 | (s)
0.1 | 3.1 | 4.9 | 0.1 | 1.7 | (s) | 0.7 | 7.5 | 0.0 | 0.3 | 0.0 | 6.0 | 17.0 | 7.9 | 24.9 | | 1998 | (s) | 3.0 | 5.5 | 0.2 | 2.0 | (s) | 0.7 | 8.3 | 0.0 | 0.2 | 0.0 | 6.4 | 18.0 | 8.1 | 26.1 | | 1999
2000 | (s) | 2.3
2.6 | 5.5 | 0.2 | 1.9 | (s) | 0.4
0.6 | 8.1
8.7 | 0.0
0.0 | 0.3
0.3 | 0.0 | 6.6 | 17.4
18.3 | 6.3
9.1 | 23.7 | | 2000 | (S)
(S) | 2.5 | 6.1
5.9 | 0.1
0.2 | 1.9
2.6 | (s)
(s) | 0.6 | 9.3 | 0.0 | 0.3 | 0.0
0.0 | 6.7
6.7 | 18.3 | Rag | 27.5
R 28.5 | | 2002 | (s) | 2.5 | 5.0
R 5.7 | 0.1 | 2.6 | (s) | 0.8 | 8.5 | 0.0 | 0.2 | 0.0 | 6.8 | 18.0 | R 11 Q | Kaaa | | 2003 | (s) | 2.8 | | 0.1 | 2.0 | (s) | 1.0 | R 8.8 | 0.0 | 0.2 | 0.0 | 6.4 | R 18.2 | K 12 2 | R 30.4 | | 2004 | (s) | 2.7
2.6 | 6.0 | 0.2
0.2 | 2.4
2.0 | (s)
(s) | 0.9
0.9 | 9.6
8.1 | 0.0 | 0.2
0.6 | 0.0
0.0 | 6.7 | 19.3
18.3 | R 12.1
R 11.7 | R 31.4
R 30.0 | | 2005
2006 | (s)
(s) | 2.6 | 5.0
4.7 | 0.2 | 2.0 | (S)
(S) | 0.9 | 7.7 | 0.0
0.0 | 0.6 | 0.0 | 7.0
6.9 | 17.6 | 11.5 | 29.1 | | 2007 | (s) | 2.6 | 4.5 | 0.2 | 2.5 | (s) | 0.5 | 7.7 | 0.0 | 0.6 | 0.0 | 7.0 | 18.0 | R 11.5 | 29.4 | | 2008 | 0.0 | 2.5 | R 3.3 | (s)
0.1 | 3.0 | (s) | 0.7 | R 7.0 | 0.0 | 0.7 | 0.0 | 7.0 | R 17 1 | K 11.5 | R 28.6 | | 2009
2010 | 0.0 | 2.5
2.4 | R 4.1
R 3.9 | | 2.9
2.8 | (s) | 0.6 | R 7.7
R 7.2 | 0.0 | R 1.2
R 1.2 | 0.0
0.0 | 6.8 | R 18.2
R 17.7 | R 11.1
R 11.3 | R 29.3
R 29.0 | | 2010 | 0.0 | 2.4 | 3.8 | (s)
(s) | 3.3 | (s)
(s) | 0.4
0.3 | 7.4 | 0.0
0.0 | 1.3 | 0.0 | 6.9
6.9 | 18.1 | 11.3 | 29.2 | | | 0.0 | 2.0 | - 0.0 | (0) | 0.0 | (5) | - 0.0 | | 0.0 | | | - 0.0 | | | | a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. b Liquefied petroleum gases. Beginning in 1993, includes fuel ethanol blended into motor gasoline. Includes small amounts of petroleum coke not shown separately. Conventional hydroelectric power. For 1960 through
1989, includes pumped-storage hydroelectricity, which cannot be separately identified. ¹f There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. h Distributed solar thermal and photovoltaic energy consumed in the commercial sector is included in residential consumption. From 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. Beginning in 2008, includes small amount of solar and wind energy consumed by commercial plants with capacity of 1 megawatt or greater. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which ¹ Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. ⁻⁻ = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The commercial sector includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. • The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT6. Industrial Sector Energy Consumption Estimates, Selected Years, 1960-2011, Vermont | | | | | | Petro | leum | | | | Bior | nass | | D. (-1) | | | | |--------------|------------------------|-----------------------------|------------------------|------------|--------------------------------|----------------------|--------------------|----------------|--|----------------------------------|-----------------------|------------------------------|--------------------------------|------------------------------|----------------------|----------------------| | | Coal | Natural
Gas ^a | Distillate
Fuel Oil | LPG b | Motor
Gasoline ^C | Residual
Fuel Oil | Other ^d | Total | Hydro-
electric
Power ^{e,f} | | Losses | | Retail
Electricity
Sales | | Electrical
System | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | | Thousan | d Barrels | | | Million
kWh | Wood and
Waste ^{f,g} | and Co-
products h | Geo-
thermal ^f | Million
kWh | Net
Energy ^{f,i} | Energy
Losses | Total ^{f,i} | | 1960 | 41 | 0 | 234 | 99 | 0 | 252 | 346 | 931 | 64 | | | | 191 | | | | | 1965 | 14 | 0 | 316 | 77 | 100 | 484 | 301 | 1,278 | 53 | | | | 352 | | | | | 1970
1975 | 3 2 | 1 2 | 463
364 | 121
179 | 68
77 | 466
421 | 372
196 | 1,489
1,237 | 62
67 | == | | | 787
858 | | | | | 1975 | 2 | 2 | 501 | 245 | 19 | 235 | 156 | 1,155 | 70 | | | | 1,247 | | | | | 1985 | 6 | 2 | 500 | 70 | 117 | 98 | 445 | 1,230 | 70 | | | | 1,518 | | | | | 1990 | 1 | 2 | 554 | 85 | 81 | 115 | 146 | 981 | 17 | | | | 1,381 | | | | | 1995
1996 | 0 | 2 2 | 328
326 | 220
196 | 89
90 | 144
210 | 278
327 | 1,058
1,149 | 18
16 | == | | | 1,484
1,537 | | | | | 1997 | 107 | 2 | 345 | 77 | 95 | 212 | 830 | 1,560 | 22 | | | | 1,561 | | | | | 1998 | 0 | 2 | 379 | 144 | 76 | 168 | 329 | 1,095 | 24 | | | | 1,534 | | | | | 1999 | 80 | 3 | 409 | 19 | 82 | 149 | 248 | 908 | 20 | | | | 1,587 | | | | | 2000
2001 | 0 | 4 | 381
366 | 223
303 | 79
170 | 207
149 | 277
358 | 1,166
1,344 | 20
16 | | | | 1,646
1,608 | | | | | 2002 | ő | 3 | 338 | 229 | 179 | 132 | 205 | 1 083 | 16 | | | | 1,592 | | | | | 2003 | 0 | 2 | R 445 | 139 | 210 | 141 | 178 | R 1,112 | 6 | | | | 1,460 | | | | | 2004
2005 | 0 | 3 | 586
560 | 145
259 | 237
235 | 151
156 | 537
210 | 1,656
1,419 | 21
21 | | | | 1,577
1,644 | | | | | 2005 | 0 | 3 | 509 | 411 | 264 | 130 | 149 | 1,419 | 22 | | | | 1,626 | | | | | 2007 | Ō | 3 | 396 | 220 | 198 | 151 | 352 | 1 318 | 2 | | | | 1,635 | | | | | 2008 | 0 | 3 | R 519
R 533 | 165 | 115 | R 117
R 105 | R 59
R 136 | R 976
R 979 | 21 | | | | 1,565 | | | | | 2009
2010 | 0 | 3 | R 551 | 91
66 | 114
R 149 | R 97 | R 136 | R 1,005 | 25
25 | | | | 1,383
1,446 | | | | | 2011 | ő | 3 | | 72 | | 96 | 134 | 1,126 | 24 | | | | 1,417 | | | | | | | | | | | | | Tri | llion Btu | | | | | | | | | 1960 | 1.1 | 0.0 | 1.4 | 0.4 | | 1.6 | 2.2 | 5.5 | 0.7 | 4.4 | NA | NA | 0.7 | 12.4 | 1.6 | 14.0 | | 1965 | 0.4 | 0.0 | 1.8 | 0.3 | | 3.0 | 1.9 | 7.6 | 0.6 | 4.1 | NA | NA | 1.2 | 13.9 | 2.9 | 16.7 | | 1970
1975 | 0.1
0.1 | 1.1
1.5 | 2.7
2.1 | 0.5
0.7 | 0.4
0.4 | 2.9
2.6 | 2.4
1.1 | 8.8
7.0 | 0.6
0.7 | 4.3
4.1 | NA
NA | NA
NA | 2.7
2.9 | 17.6
16.3 | 6.5
7.0 | 24.1
23.3 | | 1980 | (s)
0.1 | 1.6 | 2.9 | 0.9 | 0.1 | 1.5 | 0.9 | 6.3 | 0.7 | 9.5 | NA | NA | 4.3 | 22.5 | 10.2 | 32.7 | | 1985 | | 1.9 | 2.9 | 0.2 | | 0.6 | 2.8 | 7.2 | 0.7 | 11.2 | 0.0 | NA | 5.2 | 26.3 | 11.9 | 38.2 | | 1990
1995 | (s)
0.0 | 1.8
2.1 | 3.2
1.9 | 0.3
0.8 | | 0.7
0.9 | 0.8
1.8 | 5.5
5.9 | 0.2
0.2 | 2.1
3.2 | 0.0 | 0.0
0.0 | 4.7
5.1 | 14.4
16.5 | 8.0
6.5 | 22.4
23.0 | | 1996 | 0.0 | 2.0 | 1.9 | 0.8 | 0.5 | 1.3 | 2.1 | 6.5 | 0.2 | 2.9 | 0.0 | 0.0 | 5.2 | 16.9 | 7.2 | 24.0 | | 1997 | 2.6 | 2.4 | 2.0 | 0.3 | 0.5 | 1.3 | 5.5 | 9.6 | 0.2 | 3.2 | 0.0 | 0.0 | 5.3 | 23.4 | 7.0 | 30.4 | | 1998 | 0.0 | 2.1 | 2.2 | 0.5 | | 1.1 | 2.0 | 6.2 | 0.2 | 2.7 | 0.0 | 0.0 | 5.2 | 16.5 | 6.6 | 23.2 | | 1999
2000 | 2.0
0.0 | 2.9
4.0 | 2.4
2.2 | 0.1
0.8 | 0.4
0.4 | 0.9
1.3 | 1.6
1.7 | 5.4
6.5 | 0.2
0.2 | 2.5
3.0 | 0.0 | 0.0 | 5.4
5.6 | 18.4
19.3 | 5.1
_ 7.7 | 23.6
_ 27.0 | | 2000 | 0.0 | 2.6 | 2.2 | 1.1 | 0.4 | 0.9 | 2.3 | 7.3 | 0.2 | 2.6 | 0.0 | 0.0 | 5.5 | 18.2 | Ran | R 26 2 | | 2002 | 0.0 | 3.1 | 2.0
R 2.6 | 0.8 | 0.9 | 0.8 | 1.3 | 5.9 | 0.2 | 1.3 | 0.0 | 0.0 | 5.4 | 15.9 | R94 | R 25.3 | | 2003 | 0.0 | 2.5 | | 0.5 | | 0.9 | 1.1 | R 6.2 | 0.1 | 1.2 | 0.0 | 0.0 | 5.0 | R 14.9 | R 9 4 | R 24 3 | | 2004
2005 | 0.0 | 2.8
2.6 | 3.4
3.3 | 0.5
0.9 | 1.2
1.2 | 0.9
1.0 | 3.5
1.3 | 9.6
7.7 | 0.2
0.2 | 1.5
2.2 | 0.0 | 0.0 | 5.4
5.6 | 19.5
18.4 | R 9.6
R 9.4 | R 29.1
27.7 | | 2005 | 0.0 | 2.8 | 3.0 | 1.5 | 1.4 | 0.8 | 1.0 | 7.7 | 0.2 | 2.5 | 0.0 | 0.0 | 5.5 | 18.6 | 9.2 | 27.8 | | 2007 | 0.0 | 3.0 | 2.3 | 0.8 | 1.0 | 1.0 | 2.3 | 7.4 | (s) | 1.6 | 0.0 | 0.0 | 5.6 | R 17 6 | 9.1 | R 26.7 | | 2008 | 0.0 | 3.0 | R 3.0 | 0.6 | | R 0.7 | 0.4 | R 5.3
R 5.6 | 0.2 | 1.5 | 0.0 | 0.0 | 5.3 | R 15 4 | 8.8
P 3.3 | K 24 2 | | 2009
2010 | 0.0
0.0 | 2.9
2.9 | R 3.1
R 3.2 | 0.3
0.2 | 0.6
R 0.8 | 0.7
R 0.6 | R 0.9
R 0.9 | R 5.6
R 5.7 | 0.2
0.2 | R 1.4
R 1.5 | 0.0
0.0 | 0.0
0.0 | 4.7
4.9 | R 14.9
R 15.4 | R 7.7
R 8.1 | R 22.6
R 23.5 | | 2010 | 0.0 | 2.8 | 3.9 | 0.2 | | 0.6 | 0.9 | 6.4 | 0.2 | 1.6 | 0.0 | 0.0 | 4.8 | 15.9 | 7.8 | 23.7 | | | 0.0 | 2.0 | 3.0 | 3.2 | 3.0 | 3.0 | 3.0 | J | 0.2 | | 0.0 | 0.0 | | .0.0 | | | a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. plants with capacity of 1 megawatt or greater. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. I incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for b Liquefied petroleum gases. Egginning in 1993, includes fuel ethanol blended into motor gasoline. d Includes asphalt and road oil, kerosene, lubricants, and the 16 other petroleum products as described in the Technical Notes, Section 4, "Other Petroleum Products." ⁶ Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. 9 Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. h Losses and co-products from the production of fuel ethanol. Distributed solar thermal and photovoltaic energy consumed in the industrial sector is included in residential consumption. From 1981 through 1992, includes fuel ethanol blended into motor gasoline but not shown in the motor gasoline column. Beginning in 2008, includes small amount of solar and wind energy consumed by industrial electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. kWh = Kilowatthours. -- = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The industrial sector includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. • The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. Sée the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT7. Transportation Sector Energy Consumption Estimates,
Selected Years, 1960-2011, Vermont | | | | | | | Р | etroleum | | | | D. (all | | | | |--------------|--------------------------|-----------------------------|----------------------|------------------------|--------------------------|------------------|--------------|--------------------------------|----------------------|------------------|--------------------------------|------------------------------|----------------------|------------------| | | Coal | Natural
Gas ^a | Aviation
Gasoline | Distillate
Fuel Oil | Jet
Fuel ^b | LPG ^c | Lubricants | Motor
Gasoline ^d | Residual
Fuel Oil | Total | Retail
Electricity
Sales | | Electrical
System | | | Year | Thousand
Short Tons | Billion
Cubic Feet | | | | Thou | sand Barrels | | | | Million
Kilowatthours | Net
Energy ^{f,g} | Energy
Losses h | Total f,g | | 1960 | 1 | 0 | 19
25 | 254
185 | 82
79 | (s) | 68
44 | 3,205
3,665 | 0 | 3,629 | 0 | | | | | 1965 | (s)
(s)
(s) | 0 | 25 | 185 | 79 | 1 | 44 | 3,665 | 0 | 4,000 | 0 | | | | | 1970
1975 | (S) | 0 | 14
11 | 346
504 | 121
129 | 3 | 49
45 | 4,985
5,591 | 2 2 | 5,519
6,284 | 0 | | | | | 1980 | 0 | Ö | 25 | 757 | 137 | 2 | 52 | 5,386 | 0 | 6,359 | Ö | | | | | 1985 | 0 | (s) | 22 | 977 | 201 | 13 | 47 | 5,656 | 0 | 6,916 | 0 | | | | | 1990 | 0 | (s) | 15 | 1,043 | 180 | 11 | 53 | 6,574 | 3
0 | 7,878 | 0 | | | | | 1995
1996 | 0 | (s)
(s) | 12
10 | 1,981
2,227 | 127
99 | 15
16 | 51
49 | 7,116
7,234 | 0 | 9,302
9,636 | 0 | | | | | 1997 | 0 | (s) | 12 | 1.809 | 106 | 17 | 52 | 7.504 | 0 | 9.501 | 0 | | | | | 1998 | Ō | (s) | 10 | 1,784 | 121 | (s) | 55 | 7,428 | 0 | 9,398 | (s) | | | | | 1999 | 0 | (s)
(s) | 12 | 2,006 | 143 | 2 | 55
54 | 7,610 | 0 | 9,828 | Ó | | | | | 2000
2001 | 0 | | 40
44 | 1,245
1,690 | 144
120 | 0
(s) | 54
50 | 8,309
7.844 | 0 | 9,793
9,748 | 0 | | | | | 2002 | 0 | (s)
(s) | 10 | 1 510 | 65 | (s) | 49 | 7,978 | 0 | 0,621 | 0 | | | | | 2003 | Ö | (s)
(s) | 9 | R 1.565 | 68 | `4 | 45 | 8,088 | 0 | R 9,779 | 0 | | | | | 2004 | 0 | (s) | 21 | 1,498 | 309 | 5 | 46 | 8,164 | 0 | 10,042 | 0 | | | | | 2005
2006 | 0 | (s)
(s) | 26
16 | 1,506
1,636 | 423
376 | 8 | 46
45 | 8,166
8,135 | 0 | 10,174
10,216 | 0 | | | | | 2007 | 0 | (5) | 16 | 1 580 | 317 | 4 | 45 | 8,149 | 0 | 10 122 | 0 | | | | | 2008 | ŏ | (s)
(s) | 10 | R 1 464 | 266 | 29 | 46
43 | 7,865 | ŏ | R 9.677 | ŏ | | | | | 2009 | 0 | (s) | 11 | R 1.547 | 512 | .5 | 38 | 7,843 | 0 | R 9,957 | 0 | | | | | 2010
2011 | 0 | (s)
(s) | 9 | R 1,710
1,686 | 222
231 | 10
6 | 43
41 | R 7,710
7,451 | 0 | R 9,704
9,424 | 0 | | | | | 2011 | 0 | (3) | 0 | 1,000 | 231 | 0 | | Ilion Btu | 0 | 3,424 | 0 | 1960 | (s)
(s)
(s)
(s) | 0.0 | 0.1 | 1.5 | 0.4 | (s) | 0.4 | 16.8 | 0.0 | 19.3 | 0.0 | 19.3 | 0.0 | 19.3 | | 1965
1970 | (S) | 0.0
0.0 | 0.1
0.1 | 1.1
2.0 | 0.4
0.7 | (s)
(s) | 0.3
0.3 | 19.3
26.2 | 0.0
(s) | 21.2
29.3 | 0.0
0.0 | 21.2
29.3 | 0.0
0.0 | 21.2
29.3 | | 1975 | (s) | 0.0 | 0.1 | 2.9 | 0.7 | (s) | 0.3 | 29.4 | | 33.4 | 0.0 | 33.4 | 0.0 | 33.4 | | 1980 | 0.0 | 0.0 | 0.1 | 4.4 | 0.8 | (s) | 0.3
0.3 | 28.3 | (s)
0.0 | 33.9 | 0.0 | 33.9 | 0.0 | 33.9 | | 1985 | 0.0 | (s) | 0.1 | 5.7 | 1.1 | 0.1 | 0.3 | 29.7 | 0.0 | 37.0 | 0.0 | 37.0 | 0.0 | 37.0 | | 1990
1995 | 0.0
0.0 | (S) | 0.1
0.1 | 6.1
11.5 | 1.0
0.7 | (s)
0.1 | 0.3
0.3 | 34.5
37.1 | (s)
0.0 | 42.1
49.8 | 0.0
0.0 | 42.1
49.8 | 0.0
0.0 | 42.1
49.8 | | 1996 | 0.0 | (s) | 0.1 | 13.0 | 0.6 | 0.1 | 0.3 | 37.7 | 0.0 | 51.7 | 0.0 | 51.7 | 0.0 | 51.7 | | 1997 | 0.0 | (s)
(s)
(s)
0.2 | 0.1 | 10.5 | 0.6 | 0.1 | 0.3 | 39.1 | 0.0 | 50.7 | 0.0 | 50.9 | 0.0 | 50.9 | | 1998 | 0.0 | (s)
(s) | 0.1 | 10.4 | 0.7 | (s)
(s) | 0.3 | 38.7 | 0.0 | 50.2 | (s)
0.0 | 50.2 | (s) | 50.2 | | 1999
2000 | 0.0
0.0 | | 0.1 | 11.7 | 0.8
0.8 | (s) | 0.3
0.3 | 39.7
43.3 | 0.0
0.0 | 52.6
51.9 | 0.0 | 52.6
51.9 | 0.ó
0.0 | 52.6
51.9 | | 2000 | 0.0 | (s)
(s) | 0.2
0.2 | 7.3
9.8 | 0.8 | 0.0
(s) | 0.3 | 43.3
40.9 | 0.0 | 51.9
51.9 | 0.0 | 51.9
51.9 | 0.0 | 51.9
51.9 | | 2002 | 0.0 | (s)
(s) | 0.1 | 8.8 | 0.4 | (s) | 0.3 | 41.5 | 0.0 | 51.1 | 0.0 | 51.1 | 0.0 | 51.1 | | 2003 | 0.0 | (s) | (s)
0.1 | R 9.1 | 0.4 | (s) | 0.3 | 42.1 | 0.0 | R 51.9 | 0.0 | R 52.0 | 0.0 | R 52.0 | | 2004
2005 | 0.0
0.0 | (s) | 0.1
0.1 | 8.7
8.8 | 1.8
2.4 | (s) | 0.3
0.3 | 42.6
42.6 | 0.0
0.0 | 53.5
54.2 | 0.0
0.0 | 53.5
54.2 | 0.0
0.0 | 53.5
54.2 | | 2005 | 0.0 | (s)
(s) | 0.1 | 9.5 | 2.4 | (s)
(s) | 0.3 | 42.6
42.4 | 0.0 | 54.2
54.5 | 0.0 | 54.2
54.5 | 0.0 | 54.2
54.5 | | 2007 | 0.0 | (s) | 0.1 | 9.3 | 1.8 | (s) | 0.3 | 42.5 | 0.0 | 54.0 | 0.0 | 54.0 | 0.0 | 54.0 | | 2008 | 0.0 | (s)
(s) | 0.1 | Rgs | 1.5 | 0.1 | 0.3 | 41.0 | 0.0 | R 51 5 | 0.0 | R 51.5
R 53.2 | 0.0 | K 51 5 | | 2009 | 0.0 | (s)
(s) | 0.1 | R 9.0
R 10.0 | 2.9 | (s)
(s) | 0.2 | 40.9
R 40.2 | 0.0 | R 53.2
R 51.8 | 0.0 | ^R 53.2
R 51.8 | 0.0 | R 53.2
R 51.8 | | 2010
2011 | 0.0
0.0 | (S)
0.1 | (s)
(s) | 9.8 | 1.3
1.3 | (S)
(S) | 0.3
0.2 | 38.9 | 0.0
0.0 | 50.3 | 0.0
0.0 | 50.4 | 0.0
0.0 | 50.4 | | _0.1 | 0.0 | 0.1 | (3) | 0.0 | 1.0 | (3) | 0.2 | 50.5 | 0.0 | 00.0 | 0.0 | 50.7 | 0.0 | 50.7 | ^a Transportation use of natural gas is gas consumed in the operation of pipelines, primarily in compressors, and, since 1990, natural gas consumed as vehicle fuel. ^b Through 2004, includes kerosene-type and naphtha-type jet fuel. Beginning in 2005, includes kerosene-type jet fuel only; naphtha-type jet fuel is included in "Industrial sector, Other Petroleum." ^c Liquefied petroleum gases. ^d Beginning in 1993, motor gasoline includes fuel ethanol blended into the product. ^e Beginning in 1981, fuel ethanol is shown separately to display the use of renewable energy by the transportation sector. It is counted only once in the total. There is also a discontinuity in this time series between 2004 and 2005 due to changes in estimation methodology. See Section 5 of the Technical Notes. † There is a discontinuity in this time series between 1980 and 1981 due to the expanded coverage of renewable energy sources beginning in 1981. 9 From 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. h Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. ^{— =} Not applicable. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes. Table CT8. Electric Power Sector Consumption Estimates, Selected Years, 1960-2011, Vermont | Coal Case Case Case Case Fuel Oil Case Fuel Oil Total Fuel Oil Fue | | | | | Petro | leum | | Needeen | | Biomass | | | | No | | |--|------|------|-----------------------------|-------------------------------------|----------|-----------------------------------|----------|----------------|--------------------------|------------|-------------------------|--------------|-------------------|----------------
----------------------| | Thousand Short Thousand Barrels | | Coal | Natural
Gas ^a | Distillate
Fuel Oil ^b | | Residual
Fuel Oil ^c | Total | | Hydroelectric
Power d | Wasal | Geothermal ^f | Solar/PV f,g | Wind ^f | | | | 1975 13 1 88 0 (s) 87 3.581 871 0 NA NA 75 1980 28 (s) 84 0 0 0 64 2.999 852 0 0 NA NA NA 75 1980 28 (s) 84 0 0 0 38 3.616 3.42 0 0 0 0 1,710 1980 0 (s) 19 0 0 0 19 39 0 0 39 3.8899 194 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 13 3.7899 1,1216 0 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 3 3.8899 14 0 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 3 3.589 11,75 0 0 0 0 3.517 1999 0 (s) 64 0 0 0 64 4.099 1,175 0 0 0 0 3.517 1999 0 0 (s) 64 0 0 0 64 4.099 1,175 0 0 0 144 7.672 1999 0 0 (s) 84 0 0 0 64 4.099 1,175 0 0 0 142 7.672 2002 0 0 (s) 87 0 0 0 157 4.548 1,170 0 0 0 0 12 2.3919 2002 0 0 (s) 87 0 0 0 157 4.548 1,180 1 | Year | | | | Thousand | d Barrels | | Million Ki | lowatthours | and | | Million Kil | owatthours | | Total ^{f,i} | | 1975 13 1 88 0 (s) 87 3.581 871 0 NA NA 75 1980 28 (s) 84 0 0 0 64 2.999 852 0 0 NA NA NA 75 1980 28 (s) 84 0 0 0 38 3.616 3.42 0 0 0 0 1,710 1980 0 (s) 19 0 0 0 19 39 0 0 39 3.8899 194 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 13 3.7899 1,1216 0 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 3 3.8899 14 0 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 3 3.589 11,75 0 0 0 0 3.517 1999 0 (s) 64 0 0 0 64 4.099 1,175 0 0 0 0 3.517 1999 0 0 (s) 64 0 0 0 64 4.099 1,175 0 0 0 144 7.672 1999 0 0 (s) 84 0 0 0 64 4.099 1,175 0 0 0 142 7.672 2002 0 0 (s) 87 0 0 0 157 4.548 1,170 0 0 0 0 12 2.3919 2002 0 0 (s) 87 0 0 0 157 4.548 1,180 1 | 1960 | 19 | 0 | 8 | 0 | 1 | 9 | 0 | 809 | | 0 | NA | NA | 64 | | | 1975 13 1 88 0 (s) 87 3.581 871 0 NA NA 75 1980 28 (s) 84 0 0 0 64 2.999 852 0 0 NA NA NA 75 1980 28 (s) 84 0 0 0 38 3.616 3.42 0 0 0 0 1,710 1980 0 (s) 19 0 0 0 19 39 0 0 39 3.8899 194 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 13 3.7899 1,1216 0 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 3 3.8899 14 0 0 0 0 0 3.517 1980 0 (s) 19 0 0 0 19 3 3.589 11,75 0 0 0 0 3.517 1999 0 (s) 64 0 0 0 64 4.099 1,175 0 0 0 0 3.517 1999 0 0 (s) 64 0 0 0 64 4.099 1,175 0 0 0 144 7.672 1999 0 0 (s) 84 0 0 0 64 4.099 1,175 0 0 0 142 7.672 2002 0 0 (s) 87 0 0 0 157 4.548 1,170 0 0 0 0 12 2.3919 2002 0 0 (s) 87 0 0 0 157 4.548 1,180 1 | 1965 | 43 | | 38 | | 3 | 42 | | 661 | | | | | | | | 1980 9 (s) 63 0 0 0 63 2,979 743 0 NA NA 187 1986 28 (s) 34 0 0 34 2,999 852 0 0 0 0 321 1996 0 1 9 30 0 0 8 3 369 1,344 0 0 0 0 3,174 1997 0 (s) 31 0 0 0 34 2,859 1,344 0 0 0 0 3,174 1997 0 (s) 31 0 0 0 34 2,859 1,246 0 0 0 0 3,574 1997 0 (s) 31 0 0 0 13 4,287 1,046 0 0 0 0 3,374 1997 0 (s) 31 0 0 0 13 4,287 1,046 0 0 0 0 3,374 1997 0 (s) 4,459 1,175 0 0 0 0 1,4 3,867 2000 0 (s) 159 0 0 0 159 4,548 1,170 0 0 0 12 2,2999 2001 0 (s) 87 0 0 87 4,171 868 0 0 0 12 2,2999 2002 0 (s) 31 0 0 0 37 4,488 1,098 0 0 0 12 2,2999 2002 0 (s) 31 0 0 0 37 4,488 1,098 0 0 0 12 2,299 2002 0 (s) 31 0 0 0 37 4,488 1,199 0 0 0 11 2,438 2005 0 (s) 31 0 0 0 37 4,488 1,199 0 0 0 11 2,438 2006 0 (s) 48 0 0 0 15 4 4,848 1,199 0 0 0 11 2,438 2007 0 (s) 87 0 0 12 4,072 1,190 0 0 0 11 2,438 2008 0 (s) 48 0 0 0 8 5,149 0 0 0 0 11 2,299 2008 0 (s) 88 0 0 0 8 5,149 0 0 0 0 11 2,243 2009 0 (s) 8 7 0 1 8 8 0 0 0 8 5,149 0 0 0 0 11 2,243 2009 0 (s) 8 7 0 1 5 4,488 1,199 0 0 0 11 2,243 2009 0 (s) 8 7 0 1 5 4,488 1,199 0 0 0 11 2,243 2009 0 (s) 8 7 0 1 5 4,488 1,199 0 0 0 11 2,243 2009 0 (s) 8 7 0 0 8 7 4,498 1,186 0 0 0 11 2,243 2009 0 (s) 8 7 0 0 8 7 4,498 1,186 0 0 0 11 2,243 2009 0 (s) 8 7 0 0 8 7 4,498 1,189 0 0 0 11 2,243 2009 0 (s) 8 7 0 0 8 7 4,498 1,189 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 8 7 4,498 1,189 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 8 7 4,498 1,189 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 8 7 4,498 1,189 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 8 7 4,498 1,189 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 8 7 4,498 1,189 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 8 7 4,498 1,189 0 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 1 7 4,498 1,189 0 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 1 7 4,498 1,189 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 1 7 4,498 1,199 0 0 0 0 11 2,248 2009 0 (s) 8 7 0 0 1 7 4,498 1,199 0 0 0 0 11 2,248 2000 0 0 (s) 8 7 0 0 1 7 4,498 1,199 0 0 0 0 11 2,248 1,19 | 1970 | 55 | 0 | 268 | | 23 | | | 724 | | | NA | | 50 | | | 1985 28 (s) 34 0 0 0 34 2,999 852 0 0 0 0 321 0- 1996 0 0 (s) 38 0 0 0 8 3,616 0 0 0 0 1,710 0- 1998 0 0 (s) 36 0 0 0 39 3,853 856 0 0 0 0 3,857 0- 1998 0 0 (s) 107 0 0 0 107 3,338 1,170 0- 0 0 0 1,4 7,677 0- 1998 0 0 (s) 107 0 0 0 107 3,338 1,170 0- 0 0 0 1,8 1,767 0- 1998 0 0 (s) 107 0 0 0 1,9 1,175 0- 0 0 0 1,170 0- 0 0 1,170 0- 1998 0 0 (s) 107 0 0 0 1,170 0- 1,170 0- 0 0 0 1,170 0- 0 0 0 1,170 0- 0 0 0 1,170 0- 0 0 0 0 1,170 0- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 9 | (9) | | | (S) | 63 | 3,301
2 979 | | | | | | | | | 1990 0 1 8 0 0 8 3.816 1,348 0 0 0 1,710 1995 0 0 (8) 38 0 0 0 39 3.89 3544 0 0 0 0 3,357 1996 0 0 (8) 16 0 0 16 3,739 358 1,710 0 0 0 0 3,357 1997 0 0 (8) 16 0 0 16 3,739 1,710 0 0 0 0 3,357 1999 0 0 (8) 64 0 0 0 64 4,059 1,175 0 0 0 14 7,672 1999 0 0 (8) 64 0 0 0 64 4,059 1,175 0 0 0 14 7,672 1990 0 0 (8) 87 0 0 0 87 4,175 0 0 0 14 7,672 2001 0 0 (8) 87 0 0 0 87 4,184 1,261 0 0 0 12 2,3917 2001 0 0 (8) 87 0 0 0 87 4,184 1,261 0 0 0 12 2,399 2001 0 0 (8) 87 0 0 0 87 4,184 1,261 0 0 0 12 2,399 2004 0 (8) 87 0 0 0 57 344 1,166 0 0 0 11 1,166 2004 0 (8) 45 0 0 0 45 3,858 1,166 0 0 0 11 1,1938 2005 0 0 (8) 45 0 0 0 45 3,858 1,166 0 0 0 11 1,1938 2006 0 0 (8) 8 8 0 0 0 0 8 5,107 1,160 0 0 0 11 1,2429 2006 0 0 (8) 8 8 0 0 0 0 8 5,107 1,160 0 0 0 11 2,2429 2006 0 0 (8) 8 8 0 0 0 0 8 5,107 1,160 0 0 0 11 2,2429 2009 0 0 (8) 8 0 0 0 0 8 5,107 1,160 0 0 0 11 2,2429 2009 0 0 (9) 3 0 0 1 7 4,895 1,475 0 0 0 11 2,2429 2010 0 (9) 7 0 1 7 4,895 1,475 0 0 0 11 2,2429 2010 0 (9) 7 0 1 7 4,895 1,475 0 0 0 11 2,2429 2011 0 (9) 7 0 1 7 4,895 1,475 0 0 0 12 2,563 2011 0 (9) 7 0 1 7 4,895 1,401 0 2 33 2,552 2011 0 (9) 7 0 1 7 4,895 1,401 0 2 33 2,552 2011 0 (9) 7 0 1 7 4,895 1,401 0 2 33 2,552 2011 0 (9) 7 0 1 7 4,895
1,401 0 0 0 11 2,426 2009 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | 2.999 | | | | | | | | | 1996 0 (s) 16 0 0 16 3,799 1,216 0 0 0 3,517 1997 0 (s) 37 0 0 0 37 4,227 1,046 0 0 0 0 3,517 1998 0 (s) 1074 0 0 0 1074 3,338 1,755 0 0 0 0 3,367 1998 0 (s) 1074 0 0 0 157 4,338 1,755 0 0 0 0 12 2,917 2001 0 (s) 87 0 0 87 4,171 888 0 0 0 12 2,917 2001 0 (s) 87 0 0 87 4,171 888 0 0 0 12 2,999 2002 0 (s) 37 0 0 37 3,993 1,099 0 0 0 12 2,999 2003 0 (s) 87 0 0 0 87 4,171 888 0 0 0 12 2,999 2004 0 (s) 57 0 0 0 57 4,444 89 1,146 0 0 0 11 1,151 8 2005 0 0 (s) 57 0 0 0 57 4,444 89 1,146 0 0 0 11 1,151 8 2006 0 (s) 8 0 0 0 8 5,107 1,497 0 0 0 11 2,429 2007 0 (s) 8 0 0 0 9 4,704 645 0 0 0 11 2,429 2008 0 (s) 6 0 0 0 1 7 4 4,838 1,777 0 0 0 11 2,429 2009 0 (s) 6 0 0 0 1 7 4 4,838 1,778 0 0 0 11 2,429 2009 0 (s) 6 0 0 0 1 7 4 4,838 1,779 0 0 0 11 2,429 2007 0 (s) 7 0 1 7 4 4,838 1,779 1,799 1 | 1990 | 0 | 1 | 8 | Ō | | 8 | 3.616 | 1.348 | | Ö | | Ō | 1.710 | | | 1997 0 (s) 31 0 0 0 31 4,267 1,046 0 0 0 0,374 1998 0 (s) 1077 0 0 0 107 3,388 1,170 0 0 0 0 14 7,672 1998 0 (s) 164 0 0 0 64 4,059 1,175 0 0 0 14 7,672 2002 0 (s) 31 0 0 0 31 3,963 1,175 0 0 0 14 3,374 2002 0 (s) 31 0 0 0 31 3,963 1,175 0 0 0 12 3,374 2002 0 (s) 31 0 0 0 31 3,963 1,199 0 0 0 10 2,433 2004 0 (s) 45 0 0 0 45 3,868 1,199 0 0 0 11 1,916 2004 0 (s) 45 0 0 0 45 3,868 1,166 0 0 0 11 1,916 2007 0 (s) 45 0 0 0 45 3,868 1,166 0 0 0 11 1,916 2007 0 (s) 6 0 0 8 40 0 0 8 40,72 1,187 0 0 0 11 1,218 2008 0 (s) 6 0 0 1 7 7 4,885 1,472 0 0 0 11 2,248 2009 0 (s) 6 0 0 1 7 7 4,885 1,472 0 0 0 11 2,248 2009 0 (s) 6 0 0 1 7 7 4,885 1,461 0 0 0 11 2,248 2010 0 (s) 7 0 0 (s) 7 0 0 1 7 7 4,895 1,461 0 0 0 12 2,553 2011 0 (s) 7 0 0 (s) 7 0 0 1 7 7 4,895 1,461 0 0 0 12 2,553 2011 0 (s) 7 0 0 (s) 7 0 0 1 7 7 4,895 1,461 0 0 0 12 2,553 2011 0 (s) 7 0 0 (s) 7 0 1 7 7 4,895 1,461 0 0 0 12 2,553 2011 0 (s) 7 0 0 (s) 7 0 1 7 7 4,895 1,461 0 0 0 12 2,553 2011 0 (s) 7 0 0 0 (s) 7 0 1 7 7 4,895 1,461 0 0 0 12 2,553 2011 0 (s) 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1995 | 0 | | 39 | • | 0 | 39 | 3,859 | 954 | | • | • | 0 | 3,954 | | | 1998 0 (s) 107 0 0 107 3,358 1,170 0 0 0 0 3,861 1999 0 (s) 64 0 0 0 64 4,059 1,175 0 0 14 7,672 2000 0 1 159 0 0 0 159 4,548 1,201 0 0 0 12 3,317 2003 0 (s) 57 0 0 0 37 4,848 1,201 0 0 0 110 2,433 2003 0 (s) 57 0 0 0 37 4,848 1,201 0 0 0 111 1,916 2003 0 (s) 57 0 0 0 37 4,444 1,148 0 0 0 111 1,916 2005 0 (s) 12 0 0 12 4,072 1,190 0 0 0 111 1,916 2005 0 (s) 12 0 0 12 4,072 1,190 0 0 0 11 2,149 2006 0 (s) 12 0 0 0 12 4,072 1,190 0 0 0 11 2,149 2007 0 (s) 8 0 0 0 9 4,704 1,447 0 0 0 11 2,146 2008 0 0 (s) 9 0 0 0 9 4,704 1,447 0 0 0 11 2,149 2009 0 0 (s) 9 0 0 0 9 4,704 1,447 0 0 0 11 2,483 2010 0 (s) 9 0 0 0 1 5 4,702 1,322 0 0 0 12 2,483 2010 0 (s) 5 0 0 1 5 4,702 1,322 0 0 0 14 2,426 2011 0 (s) 5 0 0 1 5 4,702 1,322 0 0 0 14 2,426 2011 0 (s) 7 0 0 1 7 7 4,907 1,401 0 2 33 2,522 2011 0 (s) 5 0 0 0 1 7 7 4,907 1,401 0 2 33 2,522 2011 0 0 (s) 7 0 0 1 7 7 4,907 1,401 0 2 3 3 2,522 2011 0 0 (s) 7 0 0 1 1 5 4,702 1,322 0 0 0 14 2,426 2011 0 0 (s) 7 0 0 1 7 7 4,907 1,401 0 2 3 3 2,522 2011 0 0 (s) 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1996 | 0 | (s) | | • | 0 | | 3,799 | 1,216 | | 0 | • | 0 | 3,517 | | | 1999 0 (s) 64 0 0 64 4,059 1,175 0 0 0 14 7,672 2001 0 0 (s) 87 0 0 0 87 4,548 1,201 0 0 0 12 2,3917 2001 0 (s) 87 0 0 0 87 4,171 888 0 0 0 12 2,999 2002 0 (s) 37 0 0 0 37 4,548 1,201 0 0 0 12 2,999 2003 0 (s) 37 0 0 0 37 4,393 1,089 0 0 0 10 2,433 2004 0 (s) 45 0 0 0 37 4,485 1,146 0 0 0 111 1,138 2005 0 (s) 88 0 0 0 8 5,107 1,497 0 0 0 111 1,138 2006 0 (s) 8 0 0 0 8 5,107 1,497 0 0 0 111 2,429 2007 0 (s) 9 0 0 0 9 4,704 645 0 0 0 11 2,429 2008 0 (s) 6 0 0 1 7 4,895 1,472 0 0 0 11 2,483 2009 0 (s) 8 0 0 1 7 4,895 1,472 0 0 0 11 2,483 2010 0 (s) 5 0 0 1 7 4,895 1,472 0 0 0 12 2,553 2010 0 (s) 5 0 0 1 5 4,732 1,401 0 2 33 2,22 2011 0 0 (s) 5 0 0 1 7 4,895 1,472 0 0 0 12 2,553 2011 0 0 (s) 5 0 0 1 7 4,895 1,472 0 0 0 12 2,553 2011 0 0 (s) 5 0 0 1 7 7 4,895 1,472 0 0 0 12 2,553 2011 0 0 (s) 5 0 0 1 7 7 4,895 1,472 0 0 0 14 2,433 2011 0 0 (s) 5 0 0 1 7 7 4,895 1,472 0 0 0 14 2,433 2011 0 0 (s) 5 0 0 1 5 4,732 1,401 0 2 33 2,22 2011 0 0 (s) 5 0 0 0 (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1997 | 0 | (8) | 107 | | 0 | 107 | 4,207
3,358 | 1,046 | | 0 | | 0 | 3,974
3,861 | | | 2000 0 1 1 159 0 0 0 159 4,548 1,201 0 0 0 12 3,917 2001 0 (s) 87 0 0 0 87 4,171 888 0 0 0 12 2,999 2002 0 (s) 31 0 0 31 3,963 1,099 0 0 0 10 2,433 2004 0 (s) 45 0 0 0 45 3,893 1,168 0 0 0 111 1,916 2004 0 (s) 45 0 0 0 45 3,893 1,168 0 0 0 111 1,916 2004 0 (s) 45 0 0 0 45 3,893 1,168 0 0 0 111 1,936 2007 0 (s) 9 0 0 0 12 2,999 2007 0 (s) 9 0 0 0 9 4,704 645 0 0 0 111 2,483 2009 0 (s) 9 0 0 0 9 4,704 645 0 0 0 111 2,483 2009 0 (s) 3 0 1 4 5,361 1,461 0 0 0 11 2,483 2010 0 (s) 5 0 0 1 5 4,782 1,322 0 0 0 12 2,563 2011 0 (s) 7 0 1 7 4,907 1,401 0 2 2 33 2,522 Trillion Btu Trill | 1999 | • | (s) | 64 | | • | | 4.059 | 1.175 | | | | | 7.672 | | | 2002 0 (s) 31 0 0 31 3,963 1,099 0 0 10 2,433 2004 0 (s) 57 0 0 0 57 4,444 1,148 0 0 0 111 1,936 2004 0 (s) 45 0 0 0 45 3,858 1,166 0 0 0 111 1,938 2005 0 (s) 12 0 0 0 12 1,1990 0 0 0 111 1,938 2007 0 (s) 8 0 0 0 8 5,107 1,497 0 0 0 111 2,149 2008 0 (s) 8 0 0 0 8 5,107 1,497 0 0 0 111 2,493 2009 0 (s) 8 0 0 1 7 4,484 1,485 1,472 0 0 0 111 2,493 2009 0 (s) 5 0 0 1 7 4,485 1,472 0 0 0 112 2,493 2010 0 (s) 5 0 1 7 0 1 7 4,907 1,401 0 2 3 33 2,552 2011 0 (s) 7 0 1 7 4,907 1,401 0 2 3 33 2,552 2011 0 (s) 7 0 1 7 4,907 1,401 0 2 3 33 2,552 2011 0 0 (s) 0 0 (s) 0 0 (s) 0.0 (s) 0.1 1,497 0,00 0.0 NA NA 0 2 95 1965 1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2000 | 0 | `1 | 159 | | • | 159 | 4,548 | 1.201 | | | | 12 | 3,917 | | | 2003 0 (s) 57 0 0 0 57 4,444 1,148 0 0 0 11 1,916 2004 0 (s) 45 0 0 0 45 3,858 1,166 0 0 0 11 1,916 2005 0 (s) 12 0 0 0 12 4,072 1,190 0 0 0 11 2,16 2007 0 (s) 8 0 0 0 8 5,107 1,497 0 0 0 11 2,429 2008 0 0 (s) 8 0 0 0 9 4,704 645 0 0 0 11 2,2489 2008 0 0 (s) 6 6 0 1 7 7 4,895 1,472 0 0 0 11 2,2489 2010 0 (s) 6 5 0 1 1 5 45,338 1,462 0 0 0 11 2,2489 2010 0 (s) 7 0 1 5 7 0 1 5 7 0 1 1 5 7 0,00 1 1 2,248 1 2011 0 (s) 7 0 1 1 7 4,907 1,401 0 2 3 3 2,522 2011 0 (s) 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2012 0 0 (s) 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2013 0 0 (s) 6 0 0 1 7 0 1 7 4,907 1,401 0 2 2 33 2,522 2014 0 0 (s) 7 0 1 1 5 4,762 1,522 0 0 0 114 2,538 2015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2001 | 0 | | 87 | | 0 | 87 | 4,171 | 868 | | • | | 12 | 2,999 | | | 2004 0 (s) 45 0 0 0 45 3,858 1,166 0 0 0 11 1,938 2005 0 (s) 12 0 0 0 12 4,072 1,190 0 0 0 11 2,416 2006 0 (s) 8 0 0 0 8 5,107 1,497 0 0 0 11 2,429 2008 0 (s) 9 0 0 0 9 4,704 645 0 0 0 11 2,429 2008 0 (s) 6 0 1 7 4,895 1,472 0 0 0 10 2,493 2010 0 (s) 3 0 1 4 5,361 1,461 0 0 12 2,553 2010 0 (s) 5 0 1 5 4,782 1,322 0 0 1 14 2,426 2011 0 (s) 7 0 1 7 4,907 1,401 0 2 3 2,522 Trillion Btu Trillion Btu 1960 0.5 0.0 (s) 0.0 (s) 0.1 0.0 8,7 0.0 0.0 NA NA 0.1 8,5 1970 1.4 0.0 1.6 0.0 0.1 1.7 0.0 8,7 0.0 0.0 NA NA 0.1 8,5 1970 1.4 0.0 1.6 0.0 0.1 1.7 0.0 7,6 0.0 0.0 NA NA 0.2 1.8 1980 0.2 0.2 0.4 0.0 0.0 (s) 0.5 39.2 9.1 0.0 0.0 NA NA 0.2 1.8 1980 0.2 0.2 0.4 0.0 0.0 (s) 0.5 39.2 9.1 0.0 0.0 NA NA 0.2 1.8 1980 0.2 0.2 0.4 0.0 0.0 (s) 0.5 39.2 9.1 0.0 0.0 NA NA 0.2 1.8 1980 0.2 0.2 0.4 0.0 0.0 0.0 0.4 32.5 7.7 0.5 0.0 NA NA 0.2 1.8 1980 0.2 0.2 0.4 0.0 0.0 0.0 0.4 32.5 7.7 0.5 0.0 NA NA 0.6 42.2 1980 0.0 0.7 (s) 0.0 0.0 0.0 0.0 0.0 0.0 NA NA NA 0.2 49.9 1980 0.0 0.7 (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA NA NA 0.6 42.2 1980 0.0 0.7 (s) 0.0 0.0 0.0 0.2 31.9 8.9 2.9 0.0 0.0 0.0 0.0 1.1 45.8 1990 0.0 0.7 (s) 0.0 0.0 0.0 4.4 32.5 7.7 0.5 0.0 NA NA NA 0.6 42.2 1990 0.0 0.7 (s) 0.0 0.0 0.2 40.5 98.8 3.4 0.0 0.0 0.0 0.0 13.5 67.7 1996 0.0 (s) 0.1 0.2 0.0 0.0 0.0 0.2 44.8 10.7 3.9 0.0 0.0 0.0 0.0 13.5 67.8 1998 0.0 0.0 0.7 (s) 0.0 0.0 0.4 42.4 12.0 42.8 0.0 0.0 0.0 0.1 13.4 79.1 1998 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.1 13.4 79.1 1999 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 13.2 68.8 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 42.4 1999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 2002 | 0 | (S) | 31
57 | | 0 | 31
57 | 3,963 | 1,099 | | • | • | | 2,433 | | | 2006 0 (s) 8 0 0 0 8 5,107 1,497 0 0 0 11 2,429 2007 0 (s) 9 0 0 0 9 4,704 645 0 0 0 111 2,429 2008 0 (s) 6 0 0 1 7 4,895 1,472 0 0 0 12 2,483 2010 0 (s) 3 0 1 4 4 5,361 1,461 0 0 1 12 2,563 2010 0 (s) 5 5 0 1 5 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 8,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1 | | 0 | (s) | | | • | | 3 858 | 1,140 | | | | | 1,910 | | | 2006 0 (s) 8
0 0 0 8 5,107 1,497 0 0 0 11 2,429 2007 0 (s) 9 0 0 0 9 4,704 645 0 0 0 111 2,429 2008 0 (s) 6 0 0 1 7 4,895 1,472 0 0 0 12 2,483 2010 0 (s) 3 0 1 4 4 5,361 1,461 0 0 1 12 2,563 2010 0 (s) 5 5 0 1 5 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 7 4,907 1,401 0 2 3 3 2,522 2010 0 (s) 8 7 0 1 8,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1 | 2005 | Ö | (s) | | | Ö | 12 | 4,072 | 1,190 | | Ö | | | 2,116 | | | 2008 | 2006 | 0 | (s) | | | • | 8 | 5.107 | 1.497 | | | | 11 | 2.429 | | | 2009 0 (s) 3 0 1 4 5.361 1.461 0 0 14 2.263 | 2007 | 0 | (s) | | | 0 | | 4,704 | | | • | | | 2,488 | | | 2010 0 (s) 5 0 1 5 4,782 1,322 0 0 14 2,426 | | 0 | (S) | | • | 1 | • | 4,895
5.361 | 1,472 | | • | • | | 2,493 | | | Trillion Btu Tril | | | (s) | | | i | | 4.782 | 1,322 | | | | | 2.426 | | | 1960 | | 0 | (s) | | 0 | 1 | 7 | 4,907 | 1,401 | | 0 | 2 | 33 | 2,522 | | | 1970 | | | | | | | | Trillion E | Btu | | | | | | | | 1970 | | 0.5 | 0.0 | (s) | | (s) | | | 8.7 | 0.0 | 0.0 | NA | | 0.2 | 9.5 | | 1975 | 1965 | 1.2 | 0.0 | 0.2 | | (s) | 0.2 | 0.0 | | 0.0 | | NA | | 0.1 | 8.5 | | 1980 | 1970 | 1.4 | 0.0 | 1.6 | | 0.1 | 1./ | 0.0 | | 0.0 | | NA | NA
NA | 0.2 | 10.8 | | 1985 0.7 0.1 0.2 0.0 0.0 0.2 31.9 8.9 2.9 0.0 0.0 0.0 0.0 1.1 45.8 1990 0.0 0.7 (s) 0.0 0.0 0.0 (s) 38.3 14.0 1.0 0.0 0.0 0.0 0.0 5.8 59.9 1995 0.0 0.1 0.2 0.0 0.0 0.0 0.2 40.5 9.8 3.4 0.0 0.0 0.0 0.0 13.5 67.7 1996 0.0 (s) 0.1 0.0 0.0 0.0 0.0 0.1 39.9 12.6 3.6 0.0 0.0 0.0 0.0 12.0 68.2 1997 0.0 (s) 0.2 0.0 0.0 0.0 0.2 44.8 10.7 3.9 0.0 0.0 0.0 0.0 13.2 68.2 1998 0.0 0.2 0.6 0.0 0.0 0.0 0.6 35.2 11.9 3.7 0.0 0.0 0.0 0.0 13.2 64.8 1999 0.0 0.3 0.4 0.0 0.0 0.0 0.4 42.4 12.0 4.2 0.0 0.0 0.0 0.1 26.2 85.5 2000 0.0 0.0 0.1 0.5 0.0 0.0 0.9 47.4 12.3 3.9 0.0 0.0 0.0 0.1 13.4 79.1 2001 0.0 0.1 0.5 0.0 0.0 0.0 0.5 43.6 9.0 3.9 0.0 0.0 0.0 0.1 13.2 67.5 2002 0.0 (s) 0.2 0.0 0.0 0.0 0.0 0.3 44.3 11.2 8.4 0.0 0.0 0.1 10.2 67.5 2002 0.0 (s) 0.3 0.0 0.0 0.0 0.0 0.3 46.3 71.6 9.4 0.0 0.0 0.0 0.1 8.3 69.6 2003 0.0 (s) 0.3 0.0 0.0 0.0 0.0 0.3 46.3 71.6 9.4 0.0 0.0 0.0 0.1 8.3 69.6 2004 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.3 46.3 71.6 9.4 0.0 0.0 0.0 0.1 6.6 65.8 2004 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.3 46.3 71.6 9.4 0.0 0.0 0.0 0.1 6.5 774.4 2004 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.3 40.2 11.7 6.8 0.0 0.0 0.0 0.1 6.6 65.8 2006 0.0 (s) 0.1 0.3 0.0 0.0 0.0 0.1 42.5 11.9 53 0.0 0.0 0.0 0.1 8.3 82.5 2007 0.0 (s) 0.1 0.0 0.0 0.0 0.1 49.3 6.4 6.0 0.0 0.0 0.0 0.1 8.5 70.4 2008 0.0 (s) 0.1 0.0 0.0 0.1 49.3 6.4 6.0 0.0 0.0 0.0 0.1 8.5 70.4 2008 0.0 (s) 0.0 0.0 (s) 0.1 0.0 0.0 0.1 49.3 6.4 6.0 0.0 0.0 0.0 0.1 8.5 80.0 | 1975 | 0.3 | 0.6 | 0.5 | | (S) | | 39.2
32.5 | 9.1
7.7 | 0.0 | | NA
NA | NA
NA | 0.3
0.6 | 49.9
42.2 | | 1990 | 1985 | 0.7 | 0.1 | 0.2 | | 0.0 | | 31.9 | 8.9 | 2.9 | | 0.0 | 0.0 | 1.1 | 45.8 | | 1996 0.0 (s) 0.1 0.0 0.0 0.1 39.9 12.6 3.6 0.0 0.0 0.0 12.0 68.2 1997 0.0 (s) 0.2 0.0 0.0 0.2 44.8 10.7 3.9 0.0 0.0 0.0 13.6 73.1 1998 0.0 0.2 0.6 0.0 0.0 0.6 35.2 11.9 3.7 0.0 0.0 0.0 0.0 13.2 64.8 1999 0.0 0.3 0.4 0.0 0.0 0.4 42.4 12.0 4.2 0.0 0.0 0.1 26.2 85.5 2001 0.0 0.1 0.5 0.0 0.0 0.9 47.4 12.3 3.9 0.0 0.0 0.1 13.4 79.1 2001 0.0 0.1 0.5 0.0 0.0 0.5 43.6 9.0 3.9 0.0 0.0 0.1 10.2 67.5 | 1990 | 0.0 | 0.7 | | 0.0 | 0.0 | | 38.3 | 14.0 | 1.0 | 0.0 | 0.0 | 0.0 | 5.8 | 59.9 | | 1997 0.0 (s) 0.2 0.0 0.0 0.2 44.8 10.7 3.9 0.0 0.0 0.0 13.6 73.1 1998 0.0 0.2 0.6 0.0 0.0 0.6 35.2 11.9 3.7 0.0 0.0 0.0 13.2 64.8 1999 0.0 0.3 0.4 0.0 0.0 0.4 42.4 12.0 4.2 0.0 0.0 0.0 0.1 26.2 85.5 2000 0.0 1.0 0.9 0.0 0.0 0.9 47.4 12.3 3.9 0.0 0.0 0.1 13.4 79.1 2001 0.0 0.1 0.5 0.0 0.0 0.9 47.4 12.3 3.9 0.0 0.0 0.1 13.4 79.1 2002 0.0 (s) 0.2 0.0 0.0 0.2 41.4 11.2 8.4 0.0 0.0 0.1 18.3 69.6 | 1995 | 0.0 | | 0.2 | | 0.0 | 0.2 | 40.5 | | 3.4 | | | | 13.5 | 67.7 | | 1998 0.0 0.2 0.6 0.0 0.0 0.6 35.2 11.9 3.7 0.0 0.0 0.0 13.2 64.8 1999 0.0 0.3 0.4 0.0 0.0 0.4 42.4 12.0 4.2 0.0 0.0 0.1 26.2 85.5 2000 0.0 1.0 0.9 0.0 0.0 0.9 47.4 12.3 3.9 0.0 0.0 0.1 13.4 79.1 2001 0.0 0.1 0.5 0.0 0.0 0.5 43.6 9.0 3.9 0.0 0.0 0.1 10.2 67.5 2002 0.0 (s) 0.2 0.0 0.0 0.2 41.4 11.2 8.4 0.0 0.0 0.1 10.2 67.5 2003 0.0 (s) 0.3 0.0 0.0 0.3 46.3 811.6 9.4 0.0 0.0 0.1 6.5 87.44 | 1996 | 0.0 | (S) | 0.1 | 0.0 | 0.0 | | 39.9 | | 3.6 | | | | 12.0 | 68.2
72.1 | | 1999 | 1997 | 0.0 | 0.2 | 0.2 | | 0.0 | | 35.2 | | 3.9 | | | 0.0 | 13.0 | 64.8 | | 2001 0.0 0.1 0.5 0.0 0.0 0.5 43.6 9.0 3.9 0.0 0.0 0.1 10.2 67.5 2002 0.0 (s) 0.2 0.0 0.0 0.0 0.2 41.4 11.2 8.4 0.0 0.0 0.0 0.1 8.3 69.6 2003 0.0 (s) 0.3 0.0 0.0 0.3 46.3 811.6 9.4 0.0 0.0 0.0 0.1 6.5 874.4 2004 0.0 0.1 0.3 0.0 0.0 0.0 0.3 40.2 11.7 6.8 0.0 0.0 0.1 6.6 65.8 2005 0.0 (s) 0.1 0.0 0.0 0.1 42.5 11.9 5.3 0.0 0.0 0.0 0.1 7.2 67.1 2006 0.0 (s) (s) (s) 0.0 0.0 (s) 53.3 14.8 5.8 0.0 0.0 0.0 0.1 8.3 82.5 2007 0.0 (s) (s) (s) 0.1 0.0 0.0 (s) (s) (s) 53.3 14.8 5.8 0.0 0.0 0.0 0.1 8.5 80.0 2008 0.0 (s) (s) (s) (s) (s) (s) (s) (s) (s) 51.2 14.5 5.6 0.0 0.0 0.0 0.1 8.5 80.0 | 1999 | 0.0 | 0.3 | 0.4 | | 0.0 | 0.4 | 42.4 | | 4.2 | | 0.0 | 0.1 | 26.2 | 85.5 | | 2002 0.0 (s) 0.2 0.0 0.0 0.0 0.2 41.4 11.2 8.4 0.0 0.0 0.0 0.1 8.3 69.6 2003 0.0 (s) 0.3 0.0 0.0 0.3 46.3 811.6 9.4 0.0 0.0 0.1 6.5 874.4 0.0 0.0 0.1 0.3 0.0 0.0 0.3 40.2 11.7 6.8 0.0 0.0 0.0 0.1 6.5 874.4 2005 0.0 (s) 0.1 0.0 0.0 0.1 42.5 11.9 5.3 0.0 0.0 0.0 0.1 7.2 67.1 2006 0.0 (s) (s) (s) 0.1 0.0 0.0 (s) 53.3 14.8 5.8 0.0 0.0 0.0 0.1 8.3 82.5 2007 0.0 (s) 0.1 0.0 0.0 0.1 49.3 6.4 6.0 0.0 0.0 0.0 0.1 8.5 70.4 2008 0.0 (s) (s) (s) (s) (s) (s) (s) (s) (s) 51.2 14.5 5.6 0.0 0.0 0.0 0.1 8.5 80.0 | 2000 | 0.0 | 1.0 | 0.9 | 0.0 | 0.0 | 0.9 | 47.4 | 12.3 | 3.9 | 0.0 | 0.0 | 0.1 | 13.4 | 79.1 | | 2004 0.0 0.1 0.3 0.0 0.0 0.3 40.2 11.7 6.8 0.0 0.0 0.1 6.6 65.8 2005 0.0 (s) 0.1 0.0 0.0 0.1 42.5 11.9 5.3 0.0 0.0 0.0 0.1 7.2 67.1 2006 0.0 (s) (s) (s) 0.0 0.0 (s) 53.3 14.8 5.8 0.0 0.0 0.0 0.1 8.3 82.5 2007 0.0 (s) (s) 0.1 0.0 0.0 0.1 49.3 6.4 6.0 0.0 0.0 0.1 8.5 70.4 2008 0.0 (s) (s) (s) (s) (s) (s) (s) 51.2 14.5 5.6 0.0 0.0 0.0 0.1 8.5 80.0 | 2001 | 0.0 | | 0.5 | 0.0 | 0.0 | 0.5 | 43.6 | 9.0 | 3.9 | | 0.0 | | 10.2 | 67.5 | | 2004 0.0 0.1 0.3 0.0 0.0 0.3 40.2 11.7 6.8 0.0 0.0 0.1 6.6 65.8 2005 0.0 (s) 0.1 0.0 0.0 0.1 42.5 11.9 5.3 0.0 0.0 0.0 0.1 7.2 67.1 2006 0.0 (s) (s) (s) 0.0 0.0 (s) 53.3 14.8 5.8 0.0 0.0 0.0 0.1 8.3 82.5 2007 0.0 (s) (s) 0.1 0.0 0.0 0.1 49.3 6.4 6.0 0.0 0.0 0.1 8.5 70.4 2008 0.0 (s) (s) (s) (s) (s) (s) (s) 51.2 14.5 5.6 0.0 0.0 0.0 0.1 8.5 80.0 | 2002 | 0.0 | | 0.2 | 0.0 | 0.0 | 0.2 | 41.4 | 11.2
R 11.6 | 8.4 | | 0.0 | | 8.3 | 69.6
R 74.4 | | 2006 0.0 (s) (s) 0.0 0.0 (s) 53.3 14.8 5.8 0.0 0.0 0.1 8.3 82.5 2007 0.0 (s) 0.1 0.0 0.0 0.1 49.3 6.4 6.0 0.0 0.0 0.1 8.5 70.4 2008 0.0 (s) (s) (s) (s) (s) (s) (s) 51.2 14.5 5.6 0.0 0.0 0.0 0.1 8.5 80.0 | 2004 | 0.0 | (5)
0.1 | 0.3 | 0.0 | 0.0 | 0.3 | 40.3
40.2 | 11.7 | 9.4
6.8 | 0.0 | 0.0 | 0.1 | 6.5
6.6 | 65.8 | | 2006 0.0 (s) (s) 0.0 0.0 (s) 53.3 14.8 5.8 0.0 0.0 0.1 8.3 82.5 2007 0.0 (s) 0.1 0.0 0.0 0.1 49.3 6.4 6.0 0.0 0.0 0.1 8.5 70.4 2008 0.0 (s) (s) (s) (s) (s) (s) (s) 51.2 14.5 5.6 0.0 0.0 0.0 0.1 8.5 80.0 | 2005 | 0.0 | | 0.1 | | 0.0 | 0.1 | 42.5 | | 5.3 | | 0.0 | | 7.2 | 67.1 | | 2008 0.0 (s) (s) 0.0 (s) (s) 51.2 14.5 5.6 0.0 0.0 0.1 8.5 80.0 | 2006 | 0.0 | (s) | (s) | 0.0 | 0.0 | (s) | 53.3 | 14.8 | 5.8 | 0.0 | 0.0 | 0.1 | 8.3 | 82.5 | | 2009 0.0 0.1 (s) 0.0 (s) (s) (s) 51.2 14.5 5.6 0.0 0.0 0.1 8.5 80.0 2009 0.0 0.1 (s) 0.0 (s) (s) 56.1 14.3 5.7 0.0 0.0 0.1 8.7 84.9 2010 0.0 0.1 (s) 0.0 (s) (s) (s) 50.0 12.9 6.5 0.0 0.0 0.1 8.3 77.9 2011 0.0 (s) (s) (s) 0.0 (s) (s) 51.4 13.6 5.5 0.0 (s) 0.3 8.6 79.5 | 2007 | 0.0 | | 0.1 | | 0.0 | 0.1 | 49.3 | | 6.0 | | 0.0 | 0.1 | 8.5 | 70.4 | | 2010 0.0 (s) (s) (s) (s) (s) 51.4 13.6 5.5 0.0 (s) 0.3 8.6 79.5 | | 0.0 | | | | (S) | (S) | | | 5.6 | | | | | | | 2011 0.0 (s) (s) (s) 0.0 (s) (s) 51.4 13.6 5.5 0.0 (s) 0.3 8.6 79.5 | | 0.0 | | (s) | | (s) | (s) | | 12.9 | | | | | | 77.9 | | | | 0.0 | | | | (s) | (s) | | 13.6 | | | | | | 79.5 | ^a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. ^b Prior to 1980, based on oil used in internal combustion and gas turbine engine plants. For 1980 through 2000, distillate fuel oil includes fuel oil Nos. 1 and 2, and small amounts of kerosene and jet fuel. ^c Prior to 1980, based on oil used in steam plants. For 1980 through 2000, residual fuel oil includes fuel oil Nos. 4, ^{5,} and 6. d Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which ^e Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. ^f There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. Solar thermal and photovoltaic energy. Belectricity traded with Canada and Mexico. Btu value calculated by converting net imports in kilowatthours by Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. ^{- - =} Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than +0.5 and greater than -0.5 or Btu value less than +0.05 and greater than -0.05. Notes: Totals may not equal sum of components due to independent rounding. • The electric power sector comprises electricity-only and combined-heat-and-power (CHP) plants within the NAICS 22 category whose primary business is to sell electricity, or electricity and heat, to the public. • Through 1988, data are for electric utilities only. Beginning in 1989, data include independent power producers. • The continuity of these data series estimates may be affected by
the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Web Page: All data are available at http://www.eia.gov/state/seds/seds-data-complete.cfm. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes.